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ABSTRACT
The prominent success of music streaming services has brought
increasingly complex challenges for music recommendation. In
particular, in a streaming setting, songs are consumed sequentially
within a listening session, which should cater not only for the user’s
historical preferences, but also for eventual preference drifts, trig-
gered by a sudden change in the user’s context. In this paper, we
propose a novel online learning to rank approach for music recom-
mendation aimed to continuously learn from the user’s listening
feedback. In contrast to existing online learning approaches for
music recommendation, we leverage implicit feedback as the only
signal of the user’s preference. Moreover, to adapt rapidly to prefer-
ence drifts over millions of songs, we represent each song in a lower
dimensional feature space and explore multiple directions in this
space as duels of candidate recommendation models. Our thorough
evaluation using listening sessions from Last.fm demonstrates the
effectiveness of our approach at learning faster and better compared
to state-of-the-art online learning approaches.

CCS CONCEPTS
• Theory of computation → Online learning theory; • Com-
putingmethodologies→Online learning settings; Learning
from implicit feedback.
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1 INTRODUCTION
Music consumption has changed tremendously in recent years with
the increasing adoption of on-demand streaming services [8, 35],
such as Spotify and Apple Music. By providing instant, ubiquitous
access to millions of songs ranging frommainstream to independent
artist productions, these services brought unique challenges for
music recommendation. One key challenge that is of particular
interest to this paper stems from the sequential nature of music
consumption via playlists [35]. While manually curated playlists
are popular, their content is agnostic to the preferences of individual
users. Moreover, they cannot scale to cover the catalogs of modern
streaming services, which severely limits discovery [33]. As a result,
automatic playlist generation has seen substantial research from
the music recommendation community [2, 5, 6, 12, 29].

Automatic playlist generation is typically triggered by a seed
song provided by the user [5, 30]. This song is then expanded into
a personalized playlist by some recommendation model encom-
passing one or more of a variety of features extracted from the
user’s historical listening activity [1, 9], current context [29], au-
dio [4, 12, 27] or metadata [26] content of each song, as well as its
popularity [16]. One key limitation of these approaches is that the
recommendation model is learned offline, regardless of the feedback
provided by the user during the current listening session. On the
other hand, while online learning approaches for music recommen-
dation have been investigated [15, 25, 38], they leverage explicit
feedback signals (e.g., ratings) to guide the learning process, which
requires an arguably intrusive interaction mechanism [18].

In this paper, we propose an online learning approach for sequen-
tial music recommendation aimed to continuously learn from the
user’s listening feedback. Given the large catalogs available in mod-
ern music streaming services, incrementally learning personalized
preferences for individual songs may become a bottleneck, limiting
the system’s ability to explore beyond the user’s historical prefer-
ences. To overcome this limitation, inspired by online learning to
rank approaches for search [34, 40], we represent songs in a lower
dimensional feature space and explore multiple directions in this
space as duels of candidate recommendation models. To determine
the winner among dueling models at each point in time, we leverage
implicit feedback signals, such as song plays and skips, to improve
the recommendation of the next song in a playlist. While such feed-
back can be unintrusively acquired as part of the user’s interaction
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with the system, it is typically a noisy reflection of the user’s true
preference [18, 19]. Moreover, only one song is recommended and
hence only one such feedback is available at each point in time,
which hinders our ability to evaluate multiple dueling models. To
enhance model exploration, we propose a counterfactual estimation
of the effectiveness of different models based on how they would
have ranked that particular song at that time. To our knowledge,
ours is the first attempt to perform online learning to rank in a
personalized and feedback-scarce scenario. Thorough experiments
using listening sessions from Last.fm attest the effectiveness of
our approach at learning better recommendation models and with
faster convergence compared to state-of-the-art online learning
approaches from the literature.

In summary, our main contributions are two-fold:
• We propose a novel online learning to rank approach for
music recommendation, capable of leveraging the user’s
implicit feedback via play or skip actions;
• We thoroughly assess the proposed approach in terms of its
learning effectiveness and convergence.

In the remainder of this paper, Section 2 discusses relatedwork on
music recommendation and online learning approaches. Section 3
describes our proposed online learning to rank approach for music
recommendation. Sections 4 and 5 describe the experimental setup
and the results of our thorough investigation. Lastly, Section 6
provides our concluding remarks and directions for future work.

2 RELATEDWORK
In this section, we describe related approaches for recommending
personalized sequences of songs as a playlist as well as approaches
for learning users’ preferences in an online fashion.

2.1 Automatic Playlist Generation
Manual playlist generation requires substantial effort from human
experts to create sequences of songs aimed to please as many users
and tastes as possible. Moreover, the generated playlists may be
biased toward the general popularity of individual songs or the
experts’ personal tastes. Instead, we focus on the automatic gener-
ation of personalized playlists [5, 21]. Static approaches leverage
past user interactions. For instance, Ragno et al. [32] proposed a
Markov random field approach by connecting songs that co-occur
in manually generated playlists into an undirected graph. Using a
seed song, provided by the user, as the starting point of a random
walk on this graph, a playlist is recommended. Similarly, Flexer
et al. [12] considered a scenario where both a seed song and a target
song are provided and proposed to create a playlist that transitions
smoothly between these songs by leveraging their audio features.

In contrast to static approaches, we target a sequential playlist
generation scenario, where songs are dynamically recommended
by taking into account user interactions during their listening ses-
sion [31]. This scenario acknowledges that users’ preferences may
be affected by their listening context, such as their current mood
or current activity (e.g., running or studying). As such, it incurs
additional challenges such as the dynamic adaptation of user prefer-
ence models [11, 14, 39] and the identification of when a particular
contextual change leads to preference shifts [15]. A number of
heuristic approaches have been proposed to tackle this problem.

For instance, Pampalk et al. [29] used implicit feedback signals to
steer the next recommended song in a playlist toward (in case of a
play) or away from (in case of a skip) the current song by exploit-
ing audio similarities. Such heuristics were later formalized and
extended by Bosteels and Kerre [6] using fuzzy set theory.

Another branch of methods based on reinforcement learning has
also tackled the sequential playlist generation scenario. These meth-
ods face the so-called exploration-exploitation dilemma, where an
agent (e.g., a music recommender) must choose at each time step
whether to exploit current knowledge (e.g., recommend the user’s
favorite song) or explore new knowledge (e.g., elicit the user’s feed-
back on other songs). For instance, Wang et al. [38] proposed a
Bayesian learning approach to balance exploration and exploita-
tion for interactive and personalized music recommendation by
leveraging users’ explicit feedback signals. Relatedly, Liebman et al.
[25] used explicit feedback to learn users’ preferences over both
individual songs as well as song transitions based on a tree-search
heuristic. In common, these approaches relied on explicit user feed-
back, which requires an intrusive interaction mechanism for rating
elicitation [18]. Although the use of implicit feedback, which is
far more abundant, is well explored in offline music recommenda-
tion, it has been rarely mentioned in the online scenario [36]. One
notable exception is the work of King and Imbrasaitė [20], who
proposed a reinforcement learning approach to walk the space of
song clusters using audio-based representations. Instead, here we
focus on individual songs as the unit of recommendation.

2.2 Contextual Bandits
In reinforcement learning, there is a subclass of problems called
multi-armed bandits (MAB). MAB is a probability theory problem
modeled as follows: one player in front of k slot machines should
decide how many times and in which order to play the machines.
Each slot machine offers a random reward, also named as payoff,
from an unknown probability distribution. Therefore, the player’s
goal is to maximize the accumulated payoff from a sequence of
moves by estimating the reward distribution of each machine [23].
Several real-world problems could be modeled in a similar fashion,
including the sequential music recommendation problem. More
specifically, our work fits a particular version of the MAB prob-
lem, known as the contextual bandit problem. In this version, the
player can also observe contextual information to decide which
machine to bet on and further estimate its reward distribution. In a
recommendation scenario, context is typically defined as any side
information (like features) about users or items [22].

Li et al. [23] modeled news recommendation as a contextual
bandit problem. Their proposed approach, denoted LinUCB, lever-
aged user clicks to optimize the selection of top news stories. In
our experiments, we adapt LinUCB for sequential music recom-
mendation based on implicit play and skip signals and use it as
a baseline. However, one potential limitation of this approach is
the fact that it models items (in our setting, songs) as arms whose
reward must be estimated. Given the large song catalogs available
for recommendation in modern music streaming platforms, explo-
ration may be hindered. As an alternative, online learning to rank
approaches have recently been introduced that represent items in
a lower-dimensional feature space and model “dueling” ranking
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Figure 1: The sequential music recommendation scenario
addressed by CDB.

models defined on this space as arms to be explored [28]. To esti-
mate model rewards, rankings produced by different models are
interleaved and presented to the user for feedback, typically in
the form of clicks. For instance, Yue and Joachims [40] proposed
Dueling Bandit Gradient Descent (DBGD), an online learning to
rank approach capable of comparing two dueling models at a time.
DBGD was later extended into Multileave Gradient Descent (MGD)
by Schuth et al. [34], enabling the comparison of multiple dueling
models at a time and hence more efficient exploration. Nevertheless,
the mode of interaction underlying these approaches is unsuited
for sequential music recommendation, where only one song (as
opposed to an entire ranking) is presented to the user for feedback
at each time step. To overcome this limitation, we introduce a novel
online learning to rank approach for sequential music recommenda-
tion, capable of estimating the rewards of multiple dueling models
based on a single feedback per user interaction.

3 COUNTERFACTUAL DUELING BANDITS
Inspired by state-of-the-art contextual bandit approaches for online
learning to rank [34, 40], we also explore multiple dueling directions
to learn better recommendation models. However, our proposed
Counterfactual Dueling Bandits (CDB) approach employs a slightly
different reward model that is better suited to scarce-feedback prob-
lems such as sequential music recommendation. This reward model
only requires a single implicit feedback signal from the user at each
interaction: either a positive one (play) or a negative one (skip). This
modification allows us to perform multiple duels between models
without the necessity of interleaved rankings of songs.

The music recommendation scenario we focus on in this work is
illustrated in Figure 1. A user consumes a music streaming service
through a listening session, where the songs are sequentially rec-
ommended by the service. Each song receives from the user either
a positive or a negative implicit feedback. For instance, in this work
wemodel the feedback as follows: either the song is entirely listened
by the user (a positive feedback) or it is skipped before its ending (a
negative feedback). In particular, the first song s1 is provided by the
user to the recommender system and it is assumed that it would
have a positive feedback from the user. This task formulation is
implemented in popular music streaming services such as Spotify’s
“Start a Radio” functionality [30]. Specifically, we are interested in
the online recommendation task of this scenario, i.e., in learning a
function f that recommends a single song at a time given a set of

CDB (u,s1,m,δ ,γ )
1 S← Φ(u,1) ▷ initial set of candidate songs
2 w← init ()
3 r ← 1 / ⟨w,S⟩−1 (s1) ▷ set the first model reward
4 for t ← 1 to∞ do
5 for i ← 1 tom do ▷ performm duels
6 v← rand_unit ()
7 wc ← w + δv ▷ generate a candidate model
8 rc ← 1 / ⟨wc,S⟩−1 (st) ▷ calculate model reward
9 if rc > r then ▷ perform duel
10 w← w + γrcv ▷ update current model
11 end if
12 end for
13 S← Φ(u,t+1)
14 st+1 ← argmaxs∈ S⟨w,s⟩ ▷ recommend song st+1
15 p ← payoff (u,st+1) ▷ receive feedback on st+1
16 r ← (p > 0) ? 1 : 1/(1/r + 1) ▷ update current reward
17 γ ← (p > 0) ? |γ | : −|γ | ▷ set exploitation direction
18 end for

Algorithm 1: The CDB algorithm.

candidate songs S. This set could be provided, for instance, by some
standard retrieval function Φ based on the historical preferences of
the target user. Several approaches to the retrieval function Φ have
been proposed [10] and are beyond the scope of this work.

The pseudo-code of CDB is presented in Algorithm 1. As input,
CDB receives a user u, an initial song s1 provided by the user as a
seed for subsequent recommendations, the number of duelsm to be
performed after each user interaction, the exploration factor δ , and
the exploitation factor γ . Firstly, we rely on a retrieval function Φ
(line 1) to provide a set of candidate songs for recommendation, e.g.,
based on the target user’s historical feedback. Each candidate song
s is modeled as a d-dimensional feature vector, as described later in
Section 4.2. At every step of CDB, we have a current model w in
charge of continuously recommending songs to the user. Following
DBGD and MGD, we consider d-dimensional linear models. The
initial model w can be instantiated (line 2) using different heuris-
tics. In our experiments in Section 5.3, we evaluate two of them:
a random initialization and an initialization based on a constant
value set to all model weights uniformly.

Next, we must set the first reward to model w (line 3) based
on the song s1 provided by the user. However, in reality, song
s1 may be different from the song s∗ that model w would have
chosen to display to the user (e.g., the model’s highest scored song).
Therefore, the model reward cannot be computed directly. Instead,
we propose a simple counterfactual estimation of model reward,
aimed to approximate the user’s feedback on song s∗ should it have
been displayed instead of s1. In particular, the function ⟨w,S⟩−1 (st)
returns the position (or rank) of song st in the ranking of candidate
songs S, attained with the inner product betweenw and S. Precisely,
r is the reciprocal rank of song s1 in the ranking produced by model
w with the candidate songs of S. Throughout the algorithm, the
current reward r will be compared with the rewards attained by
other candidate models and the results of these comparisons will
determine whether or not the current model w should be updated.
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Next, the algorithm starts a continuous loop of interactions with
user u (lines 4 to 18), composed by three key parts: model dueling
(lines 5 to 12), song recommendation (lines 13 to 14), and feedback
gathering (lines 15 to 17). The model dueling consists inm compar-
isons between each candidate model wc and the current model w.
Each model wc is the result of the vector addition of the original
modelw with a random unit vector v. The goal of using this sum is
to explore different directions (or perturbations) fromw. To control
the exploration level on generating candidate models, we use the
factor δ ∈ [0,1]. The higher the value of δ , the greater the distance
between each candidate model wc and the current model w.

Each wc is associated to a reward rc . This reward is calculated
in the same way as the first reward (line 3) previously discussed.
If rc is greater than the current model reward r , we have found
a possibly better direction to move w in and hence w should be
updated. The update of the current model w (line 10) depends on
factor γ , reward rc and v, the random direction that led us to a
reward greater than we currently have. The impact of this update
is proportional to the reward value rc . The factor γ ∈ [0,1] controls
the relative importance between the update vector rcv and the
original model w. The higher the value of γ , the more weight the
update vector will have in the new model w. Conversely, the less
weight the original model w will have in its updated version. Thus,
the factor γ controls the exploitation level of the recommendation:
the lower the value of γ , the more important the model w will be
in the next recommendation, i.e., the next recommended song will
tend to be more similar to the ones that w would recommend by
itself—for instance, a song for which the user had already given
one or more positive feedbacks in previous interactions.

After the model dueling phase, model w has possibly undergone
successive updates and will be used to make a song recommenda-
tion. Again, we use the retrieval function Φ to obtain a new set
of candidate songs S (line 13). The song st+1 ∈ S that CDB will
recommend to the user is the one that has the maximum score
according to the current model w (attained by the inner product
of w and S). Lastly, in the feedback gathering phase, the system
receives the user feedback on the recommended song st+1 and up-
dates the current reward r . The payoff p ∈ {0,1} indicates whether
the feedback was positive (play, p = 1) or negative (skip, p = 0).
When the song st+1 receives a play, the reward r is assigned the
maximum possible value (r = 1), which prevents the current model
w from being updated in the dueling phase, since a candidate model
will never achieve a reward rc better than r (line 9). The rationale
supporting this strategy is that a model that recommends a song
that receives a positive feedback is an effective model and must
be kept the same until the next interaction with the user. In our
initial experiments, we also allowed the update of the model w in
case of a positive feedback (assigning a different value for its re-
ward r ) but we found that the effectiveness of the recommendation
was equivalent when we used instead the negative feedbacks only.
Other strategies to leverage the user’s positive feedback are open
directions for research and can be easily integrated with CDB.

When the song st+1 instead receives a skip from the user, CDB
starts a search for models better than the current w. Firstly, it de-
creases the current reward r (line 16), since modelw recommended
a song whose feedback was negative. The decreasing level of the

reward r follows a decay policy based on the reciprocal rank mea-
sure. After each consecutive skip, the reward is decreased as if
the first relevant item (in the computation of reciprocal rank) was
placed one position lower. Hence, the rate of decay of rewards is
associated to the occurrence of consecutive skips. We use this decay
policy to highly penalize the model w for initial errors (i.e., skips),
increasing the probability of w being updated in the next dueling
phase. In this perspective, the current reward r can be interpreted
as a threshold value for the update of the current model w: the
smaller the reward r , the greater the probability of w being up-
dated. Moreover, we update the exploitation factor γ of CDB to
either its absolute value—in case of a play—or the inverse of its
absolute value (necessarily negative)—in case of a skip. This will
determine whether model w will move closer to (vector addition)
or away from (vector difference) the candidate models during its
update (line 10). Figure 2 illustrates this update after a skip.

Figure 2: The current model w moves away from candidate
model wc after the latter highly ranks a skipped song.

4 EXPERIMENTAL SETUP
In this section, we describe the setup that supports our investiga-
tions in Section 5 to address the following research questions:
Q1. How fast can CDB learn?
Q2. How effective is CDB at convergence?
Q3. How is CDB impacted by model initialization?
Q4. How is CDB impacted by the number of duels?

4.1 Recommendation Dataset
Our experiments use the Last.fm 1K dataset [8], comprising listen-
ing events of Last.fm1 users between July 2005 and May 2009. Each
event contains the user ID, event timestamp, artist ID, song ID, and
song title. We enrich the original dataset by joining it with two
external sources of song information: Spotify,2 for audio attributes,
and MusicBrainz,3 for content and social attributes. To respect the
sequential nature of the task and avoid peeking into future events
during training, we maintain the temporal order of the data before
splitting it for evaluation. Moreover, to avoid seasonal effects, we
consider multiple such splits, each covering six months’ worth of
interactions. For consistency, we filter out splits with less than 500
distinct users and less than 500 monthly interactions per user on
average. After this filtering, the first, second, and last splits are dis-
carded. The final dataset4 after enrichment and filtering comprises
776 unique users, 656,483 unique songs, and 11,222,409 listening
events, spread over five 6-month splits, as illustrated in Figure 3.
We evaluate all models in a sliding window setup: for every two
1http://www.last.fm
2https://developer.spotify.com/web-api/get-several-audio-features
3http://www.musicbrainz.org/
4Available upon request.

http://www.last.fm
https://developer.spotify.com/web-api/get-several-audio-features
http://www.musicbrainz.org/
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Figure 3: Temporal data partitioning into five 6-month splits.
Consecutive splits are used in pairs, with the first split used
as background for feature extraction and the second split
divided into validation, online test, and offline test.

consecutive splits in Figure 3, the first is used as background data
for feature extraction while the second is used for online learning
and evaluation. These two processes are discussed next.

4.2 Feature Extraction
Our online learning approach represents each candidate song in
a lower dimensional feature space for efficient exploration of du-
eling recommendation models. In our experiments, we consider
both collaborative as well as content-based features. Collabora-
tive features rely on the implicit feedback data available in the
background split immediately preceding each online learning split.
Following Volkovs and Yu [37], we represent users and songs in
a 100-dimensional latent space obtained via low-rank matrix fac-
torization of the background data. Artists are then represented as
an average of the vector representation of their songs. Content-
based features rely on song representations computed from external
sources. These include a sparse 176,564-dimensional textual repre-
sentation using data such as song title and artist name and a sparse
2,638-dimensional social representation using tags, both obtained
from MusicBrainz, and a dense 24-dimensional audio representa-
tion obtained from the Spotify API, comprising numeric attributes
such as acousticness, danceability, intensity, key, tempo, etc.

Given the collaborative, textual, social, and audio representations
produced for each object (a user,5 song, or artist) in the background
split, during online learning, at each time t , we represent each user-
candidate song pair ⟨u,st ⟩ as a 22-dimensional feature vector. Of
these, a total of 16 session-based features are produced using each
of the aforementioned representations by encoding the similarity
of song st (respectively artist at ) with respect to: (i) the first song
(artist) listened to in the current session; (ii) the last song (artist)
listened to in the current session. In addition, to promote discov-
ery, inspired by Xing et al. [39], we encode the time since st was
last played in the session as a feature. Moreover, using collabora-
tive representations, we further compute another 4 personalized
5For users, only a collaborative representation is produced.

preference features based on the similarity of song st (respectively
artist at ) with respect to: (i) the target user u; (ii) u’s most listened
song (artist). Lastly, as a non-personalized feature, we include the
popularity of st in the background split.

4.3 Evaluation Procedure
We tackle a dynamic playlist generation scenario where songs
are recommended sequentially, one at a time. Following standard
practice [7], we assume a negative feedback (i.e., a skip) if the song
is interrupted before 50% of its execution or a positive feedback (i.e.,
a play) otherwise. In practice, such feedback is only available for
the songs actually consumed by the users in our dataset. Since we
have no control over the mechanisms that triggered this feedback in
the first place, we cannot guarantee its unbiasedness [24]. Instead,
to ensure our estimates are reliable, we follow Gentile et al. [13]
and simulate randomly logged feedback. In particular, at each time
t , we retain the song st actually consumed by user u with payoff
pt (1 = “play”, 0 = “skip”). In addition, we include 99 extra songs
drawn uniformly at random from the set of 1,000 most similar
songs to the first song in the user’s session, given these songs’
previously computed collaborative representations as described in
Section 4.2. Hence, we turn the original problem into a ranking
problem: at each time t , the recommendation algorithm must select
a single song from the list of 100 candidates. In contrast to sampling
from the entire song catalog, this session-constrained negative
sampling provides for an arguably more challenging ranking task,
making it harder to distinguish the consumed song from the non-
consumed ones. To ensure the robustness of our findings, sampling
is performed six times, with results averaged across executions.

Following this setup, we further divide the data in each split
for different purposes, as illustrated in Figure 3. In particular, 10%
of the users in a split are used as validation data for tuning the
hyperparameters of CDB and its baselines (see Section 4.4) via grid-
search [3]. The remaining 90% of the users in the split are used
for testing under two complementary schemes, further illustrated
in Figure 4: online test and offline test. The online test aims to
assess the effectiveness of an online music recommender based
on the payoff it accumulates while learning, capturing the impact
its exploration-exploitation trade-off has on the user’s listening
experience. To this end, we define the cumulative online payoff for
a user u up to time t as:

OnlinePayoff@t =
t∑
i=1

λipi , (1)

where pi is the (instantaneous) payoff at time i and λ = 0.995 is
a discount factor aimed to give credit to systems that are able to
produce correct recommendations earlier. Such a discount factor is
commonly employed in infinite horizon online evaluation scenarios
where t → ∞ to penalize trivial attempts of exhaustive exploration
before any exploitation is performed [17]. In our experiments in
Section 5, we report OnlinePayoff@t averaged across test users in
each data split at discrete target times t ∈ {1, · · · ,κ1}, κ1 = 400.

In addition to the online test, we set aside interaction data for
each test user to perform an offline test. This complementary test
aims to assess the convergence of the recommendation models
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Figure 4: Online and offline evaluation schemes for one user.
At each time i, a model wi is learned online after a series
of duels leveraging (solid arrow) the user’s most recent feed-
back and produces (dashed arrow) a ranked list of songs. For
evaluation purposes, a model is rewarded only for placing
the user’s actually played song (highlighted in black) at the
top of the ranking.Models learned online are evaluated both
online on κ1 = 5 test cases (cases 1–5) during the user’s lis-
tening session and offline on κ2 = 3 held-out test cases (6–8).

learned online, however using a fixed, held-out set. More specifi-
cally, the offline test set for user u comprises κ2 = 100 test cases
chronologically placed after the first κ1 = 400 test cases included
in the user’s online test. Formally, given a model learned online at
time t , we compute its offline payoff as:

OfflinePayoff@t =
κ1+κ2∑
i=κ1+1

p
(t )
i , (2)

wherep (t )i is the (instantaneous) payoff obtained by amodel learned
(online) up to time t for the (offline) test case at time i . Similarly
to the OnlinePayoff@t, we report OfflinePayoff@t averaged across
test users in each split at discrete times t ∈ {1, · · · ,κ1}, κ1 = 400.

4.4 Experimental Baselines
As a strong online learning baseline, we adapt LinUCB [23], a state-
of-the-artk-armed contextual bandit approach, originally conceived
to learn users’ preferences for a fixed set of news stories given their
click feedback. In our adaptation, LinUCB leverages implicit feed-
back (play or skip) to learn preferences for a fixed set of songs
at each time t . Similar to CDB, LinUCB leverages feature-based
representations as context for selecting an arm at each time t . How-
ever, while LinUCB treats candidate songs as arms, our approach
treats candidate recommendation models as arms, selecting the best
model at time t via multiple duels. Moreover, while LinUCB was
originally proposed for non-personalized recommendation, our ap-
proach learns recommendation models tailored to the preferences
of individual users. Therefore, to assess the effect of personalization,
we produce two variants of LinUCB: (i) LinUCB-U, initialized and
updated independently for each user and split, i.e., a personalized
recommender; and (ii) LinUCB-G, initialized only once per split
and continuously updated on all users, storing what has already
been learned with previous users, in a non-personalized fashion.
To avoid network effects, users are randomized during test.
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Figure 5: Online test results (average cumulative online pay-
off) of LinUCB-G, LinUCB-U, CDB, and the Oracle after t in-
teractions with the user.

5 EXPERIMENTAL RESULTS
In this section, we validate our proposed online learning to rank
approach for sequential music recommendation by addressing the
four research questions stated in Section 4. All results are given
in terms of average cumulative online (Equation (1)) and offline
(Equation (2)) payoffs. Significance with respect to the LinUCB
baselines is verified using a paired t-test with α = 0.01.

5.1 Learning Speed
Our first set of experiments aims to answer Q1: How fast can CDB
learn? To this end, we compare CDB with the two variants of Lin-
UCB described in Section 4.4 and also with an Oracle recommender,
which recommends only the correct song to the user at each time
step, and hence provides an upper bound for the effectiveness of
the other recommenders. Figure 5 shows the average cumulative
online payoff across users at each time step t (Equation (1)), for
each of the four splits (smaller plots) as well for the average of the
four splits (larger plot). The curved shape of the average payoffs
are caused by the discount factor λ, which produces marginal gains
as the user progresses through the listening session.

From Figure 5, we observe that, for every time step t , CDB is at
least as effective as its baselines. In particular, for t ≥ 150, CDB
has significantly better results than both LinUCB variants. From
another perspective, CDB is able to achieve each average payoff
pt on the y-axis with fewer user interactions compared to its base-
lines. These results are further corroborated by those in the top
half of Table 1, which shows the average cumulative online pay-
off at the end of the users’ sessions (t = 400) in each split. From
the table, we note that LinUCB-U is slightly outperformed by its
non-personalized counterpart LinUCB-G, which suggests that the
scarcity of feedback in personalized settings may hinder the ability
of LinUCB to perform exploration in a high-dimensional space of
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Figure 6: Offline test results (avg. offline payoff) of LinUCB-
G/U, and CDB, after t interactions with the user.

songs. In contrast, CDB explores multiple candidate recommen-
dation models in a lower dimensional feature space at each user
interaction, which results in significant improvements compared to
both LinUCB variants. Recalling Q1, these results attest the ability
of CDB to learn fast, which is a key trait for an improved user
experience in live online recommendation deployments.

Table 1: Online and offline results (average cumulative on-
line payoff and average offline payoff, respectively) of CDB
and LinUCB at time step t = 400.

Algorithm 2007 01 2007 02 2008 01 2008 02

O
nl
in
e LinUCB-G 0.28±0.01 0.29±0.01 0.28±0.01 0.30±0.01

LinUCB-U 0.28±0.01 0.28±0.01 0.28±0.01 0.28±0.01
CDB 0.32▲▲±0.01 0.33▲▲±0.01 0.34▲▲±0.02 0.33▲▲±0.01

O
ffl
in
e LinUCB-G 66.75±0.53 69.40±0.50 65.93±0.45 70.58±0.51

LinUCB-U 61.47±0.71 60.22±0.74 58.36±0.70 59.87±0.74
CDB 76.79▲▲±0.91 78.94▲▲±1.00 78.54▲▲±0.92 76.46▲▲±0.92

5.2 Learning Effectiveness
The results in the previous section demonstrated the ability of
our proposed CDB to learn fast. However, the online test results
only tell part of the story, as CDB might be only exploring, and a
trade-off between exploitation and exploration can yield a better
model at the end. To investigate this further, we address Q2: How
effective is CDB at convergence? To this end, we present offline
test results in Figure 6 in terms of the average offline payoff across
users attained by each model learned online up until time step t .
Once again, smaller plots show results per test split, whereas the
larger plot shows global results across all test splits.

From Figure 6, we observe that, during the initial interactions, the
performance of CDB models is slightly lower than the models pro-
duced by LinUCB-G and slightly higher than the models produced
by LinUCB-U. However, for t ≥ 100, CDB consistently outperforms
both LinUCB variants. The ups and downs of the average offline
payoff attained by CDB can be explained by the intense exploration
of several candidate recommendation models performed during
its execution. Nevertheless, despite these initial fluctuations, CDB
converges to a significantly higher performance level than LinUCB.
This observation is further confirmed by the results at the bottom
half of Table 1, which shows the average offline payoff obtained by
CDB and LinUCB at the end of the learning process (t = 400). In
particular, CDB substantially outperforms both LinUCB variants.
Recalling Q2, these results attest the ability of CDB to learn increas-
ingly improved models along the user’s listening session, with a
highly effective performance at convergence.

5.3 Impact of the Initialization Strategy
The previous sections demonstrated the ability of CDB to learn
faster and better compared to a state-of-the-art contextual bandit
approach. To further understand the role of different components
of CDB on its effectiveness, we address Q3: How is CDB impacted
by model initialization? To answer this question, we evaluate two
alternative initialization strategies: (i) CDB Fixed, which initializes
all weights of the model w with a constant γ tuned on the valida-
tion data in each split; and (ii) CDB Random, which initializes w
randomly. Figure 7 shows the average performance of the two pro-
posed configurations in the online tests. The results of CDB Fixed
are slightly better than random initialization for each time step t in
all splits. However, the results also show that, despite starting from
a completely randomly generated model, CDB Random is able to
learn models almost as effective as the ones produced by CDB Fixed.
To complement this investigation, Figure 7 also shows the average
offline payoff attained with each initialization strategy over time.
Indeed, the first models produced by CDB Random present lower
effectiveness than CDB Fixed in all splits. Nevertheless, after just
a few user interactions (for t ≥ 50), CDB Random is able to learn
significantly better models than its initial ones and begins to pro-
duce recommendations with similar or even greater effectiveness
than the recommendations from CDB Fixed. Recalling Q3, these
observations suggest that setting aside validation data for initializ-
ing model weights may be unnecessary, which could facilitate the
deployment of CDB in other sequential recommendation domains.

5.4 Impact of the Number of Duels
To complement the analysis in the previous section, we address Q4:
How is CDB impacted by the number of duels? The expectation
is that a larger number of duels m will accelerate the learning
process and consequently improve the effectiveness of the models
produced after each interaction with the user. On the other hand,
as we increase the number of duels, we also increase the time
consumption of CDB. In particular, the time complexity of CDB
can be expressed by O (m × d × k ), wherem is the number of duels,
d is the dimensionality of the underlying feature space (22 in our
experiments), and k is the cardinality of the set of candidate songs
(100 in our experiments). Therefore, establishing an optimal setting
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Figure 7: Online and offline test results (avg. cumulative on-
line payoff and avg. offline payoff, respectively) of CDBRan-
dom/Fixed and Oracle after t user interactions.
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Figure 8: Online and offline test results (avg. cumulative on-
line payoff and avg. offline payoff, respectively) of CDB by
increasing the numberm of duels.

for m is crucial for balancing the effectiveness and efficiency of
the produced recommendations. To this end, we tested values of
m ∈ {1, · · · ,10}, tuning the remaining hyperparameters of CDB,
namely γ and δ , on the validation data. Note thatm = 1 equates to
performing a single duel at each time step, in a similar fashion to
the standard DBGD algorithm [40].

Figure 8 shows the average cumulative online payoff attained
by CDB when we increase the value of the parameterm. From the
figure, we observe that the use of multiple duels instead of a single
duel (m = 1) indeed improves the effectiveness of CDB. Also, as
expected, the results show a positive impact on effectiveness as
the parameterm increases. However, we also note that the gain
in performance tails off for higher values of m (for instance, for
m > 6) compared to the gains observed for the lower range ofm
values. For instance, the improvement fromm = 1 tom = 2 is the
highest in all the splits. Moreover, form ≥ 5, CDB outperforms the
best LinUCB variant in all splits.

We repeated the same testing methodology in the offline test
setting, as shown in Figure 8. Again, the results show a positive
impact on effectiveness as we increase the value of m, but with
decreasing gains in performance asm approaches the highest tested
values. The improvement of usingm = 7, for instance, is around
30% when compared to CDB using only one duel per feedback
(m = 1). Besides, form ≥ 3, CDB produces better results than the
best LinUCB variant in all splits. Recalling Q4, these results attest
the benefit of making the most of every single feedback provided by
the user and demonstrate the effectiveness of comparing multiple
recommendation models via duels to this end.

6 CONCLUSIONS
In this paper, we proposed CDB, a novel online learning to rank
approach for sequential music recommendation. CDB leverages
implicit feedback signals (plays and skips) to dynamically drive the
user’s listening session. To enable the exploration of multiple candi-
date recommendation models when only one feedback is received
at each point in time, we devise a counterfactual estimation of the
effectiveness of each model based on how it would have ranked the
song actually consumed by the user at that time. To the best of our
knowledge, our approach is the first to perform online learning to
rank in a personalized and feedback-scarce scenario. We thoroughly
evaluated our approach in contrast to a state-of-the-art contextual
bandit approach in a sequential music recommendation scenario
using enriched listening sessions from Last.fm. The results showed
that CDB learns more effective recommendation models while de-
manding fewer user interactions. Further analyses demonstrated its
robustness to initialization conditions and the benefit of exploring
multiple directions at each time step.

In the future, we plan to investigate the suitability of CDB for
learning personalized recommendations in other domains, such
as news recommendation. We also plan to investigate alternative
counterfactual estimation approaches for determining duel winners
under scarce feedback conditions, as well as alternatives to comple-
ment the available feedback with weak supervision, which could
enable the learning of non-linear, data-hungry recommendation
models. Lastly, we plan to further assess the effectiveness of our
approach through a live experiment with real users.
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