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Abstract. Query performance prediction (QPP) is a fundamental task
in information retrieval, which concerns predicting the effectiveness of a
ranking model for a given query in the absence of relevance information.
Despite being an active research area, this task has not yet been explored
in the context of automatic text classification. In this paper, we study the
task of predicting the effectiveness of a classifier for a given document,
which we refer to as document performance prediction (DPP). Our ex-
periments on several text classification datasets for both categorization
and sentiment analysis attest the effectiveness and complementarity of
several DPP inspired by related QPP approaches. Finally, we also ex-
plore the usefulness of DPP for improving the classification itself, by
using them as additional features in a classification ensemble.
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1 Introduction

Query performance prediction (QPP) is a challenging and fundamental prob-
lem in information retrieval. It concerns predicting the effectiveness of a rank-
ing model when there is no relevance information available. Applications for
QPP include selecting the best model depending on query features, combin-
ing multiple ranking models and requesting more information for potentially
poorly formulated queries. QPP approaches have been divided into pre-retrieval
[9, 13, 15, 16, 21, 35] and post-retrieval [6, 18, 23, 24, 30, 31, 33], depending on
the information used by the method. Inspired by QPP, in this paper, we derive
and adapt methods for document performance prediction (DPP), which aim at
predicting the performance of automatic text classifiers.

2 Document Performance Prediction

The performance of automatic text classifiers is usually measured by their av-
erage effectiveness over test documents. However, this performance can vary



depending on the specific document in question. Inspired by query performance
prediction, we define the task of document performance prediction as predicting
the effectiveness of a text classifier for a given document, when labeled data is
not available. Formally, a document performance predictor π can be defined as
a function π : D × M → Y , where D and M denote the space of all docu-
ments and classifiers probability outputs, respectively, and Y denotes the space
of possible effectiveness assessments given a pair 〈d,m〉, d ∈ D, m ∈ M . An
effective predictor π(d,m) approximates the true effectiveness ∆(ŷdm, ydm) as
accurately as possible, where ∆ is any classification effectiveness metric defined
over the classification output ŷdm = m(d) and the label ydm. In our experiments
in Section 3, we use cross-entropy as a representative evaluation metric ∆.

Depending on the information used by a document performance predictor π,
it may fall into one of two categories: pre-classification and post-classification. In
particular, a pre-classification DPP relies solely on the contents of document d
to make its performance prediction. In contrast, inspired by post-retrieval query
performance predictors, which leverage the ranked list produced by a target
ranking model, a post-classification DPP uses the classification output ŷdm in
addition to the contents of document d. In the remainder of this section, we
propose several pre- and post-classification approaches for DPP.

2.1 Pre-Classification DPP

Inspired by prior work on ad-hoc retrieval, we adapted pre-retrieval query per-
formance predictors for DPP. Instead of applying these methods on the query q,
we apply them to document d. Some of our proposed DPP also require statistics
from a corpus T , comprising documents used for training the classifier.

dT-Stats. Our first category of pre-classification DPP, denoted dT-Stats,
includes predictors that rely only on the document d and the training corpus
T . These predictors are independent of the classifier and were inspired by sev-
eral pre-retrieval QPP methods [13]. In particular, tokenCount and termCount
are the total number of tokens and the number of unique tokens in the doc-
ument, respectively. AvQL is the average character size of the tokens in the
document. {Av,Max,Dev}-IDF are the average, maximum and standard devi-
ation of the inverse document frequency of the document terms. AvICTF is
the average inverse collection term frequency of the document terms, defined as
AvICTF = 1

n

∑n
i=1[log2(cf i) − log2(tf i,d)], where n is the number of terms in

the document, cf i is the collection frequency of the i-th term and tf i,d is its
term frequency in d. SCS is the simplified clarity score of document terms, i.e.,
SCS ≈ log2

1
n + 1

n

∑n
i=1[log2(cf i)− log2(tf i,d]. {Av,Sum,Max}-SCQ are the av-

erage, maximum and standard deviation of the collection document similarity.
AvP is the average number of senses for document terms, using WordNet func-
tion wordnet.synsets, and AvNP is the average number of noun senses among
these. Av-{Path,LCH,WUP} are the relatedness of a sample of 50 terms from
the document by calculating all their pairwise similarities, using three similarity
functions provided by WordNet: Path, Leacock-Chodorow, and Wu-Palmer.



d-Latent. Our second category of pre-classification DPP, denoted d-Latent,
includes two predictors that are based on a latent representation of document
d. In particular, {Max,Avg}-PoolingGlove denote the maximum and average of
each of 50 Glove dimensions from “glove.6B.zip”3 for the document terms.

2.2 Post-Classification DPP

Recent work has shown that post-retrieval query performance predictors are
state-of-the-art in ad-hoc retrieval [18, 26, 27, 33]. Unlike QPP, we do not have
access to a list of documents retrieved for a query. Instead, we have a probability
distribution ŷdm of the classes predicted by a classifier m for document d.

DistBased. Predictors from this category assign the relevance of a docu-
ment d to each class by calculating distances between a document d and each
class centroid or between d and its k nearest neighbors (10 in our experiments)
from each class. Here, we use the distance scores (Cosine, Euclidean and Man-
hattan) themselves as predictors that exploit the combination of global and local
information about the distribution of documents in each class, as described in
prior works on document classification with distance-based features [12, 22].

BaggBased. Predictors from this category relate to the approach of Roit-
man et al. [27] and other approaches that estimate the variance of the retrieved
lists [10, 23, 30, 32]. Here we bootstrap the estimators from the bagging-based
models and use the variance of their predictions for document classes instead of
the scores of top-retrieved documents. BaggCVariance is the standard deviation
of each class predicted probability for n (20 in our experiments) random base es-
timators sampled j (50 in our experiments) times for each classification bagging
model m from {RF [3], Bert [5], Broof [29]} and n estimators = 200 (which is
the number of base models included in the bagging model). BaggQ{25,50,75}C
is similar to BaggCVariance, but instead of the standard deviation, we calculate
the 25, 50 and 75 quantiles from the class prediction probabilities. PredEntropy
is a vector containing the entropy of the base estimators predictions probabil-
ity distribution for each bagging classification model m from {RF,Bert,Broof}.
NumPredC is a vector containing the number of distinct classes (estimated prob-
ability not zero) in the base estimators predictions for each bagging classification
model m from {RF,Bert,Broof}.

ProbPBased. DPP in this category use the prediction of any classifier, being
agnostic to their inductive biases. ProbPred are the probability predictions ŷdm of
each class for each classification model m, resulting in a vector of dimensionality
|M |×|C|, where M are all the classification models the performances of which are
being predicted and C is the target set of classes. ProbPredVar is the standard
deviation of probability predictions of each class for each classification model,
resulting in a vector of dimensionality |M |×|C|. ProbPBased encompasses the 25,
50 and 75 quantiles of probability predictions of each class for each classification
model, resulting in a vector of dimensionality |M | × |C| × 3.

3 http://nlp.stanford.edu/data/glove.6B.zip



3 Evaluation

In this section, we aim to answer the following research questions:

Q1. How effective are the proposed DPP?
Q2. How complementary are the proposed DPP?
Q3. How effective are DPP for enhancing a classification ensemble?

3.1 Experimental Setup

We explored two categorization datasets, 20Newsgroups (20NG) and 4Universi-
ties (4UNI, aka WEBKB) with about 20,000 and 8,200 documents respectively.
We also evaluate our approaches for the sentiment analysis task. We considered
four data sets of messages labeled as positive or negative from distinct domains:
Amazon, BBC, NYT, YouTube [4]. Inspired by prior work on QPP [9, 27, 30, 33],
we compute the correlation between the predicted performance π(d,m) and the
actual performance ∆(ŷdm, ydm) for document d and classifier m. In particu-
lar, we measure the actual performance of m as the cross-entropy between the
predicted class distribution ŷdm and the true distribution ydm. The higher the
cross-entropy ∆, the more distant the two distributions.

We predict the performance of several classifiers,M = {XGBoost [7], KNN [1],
NaiveBayes [34], Bert [5], Broof [29], RandomForest [3], SVM [17], MLP [11]}.
Except for Bert and Broof,4 we used scikit-learn v0.18 implementations and their
default hyperparameters, with TF-IDF document representations as input. To
evaluate our proposed DPP, we perform a 5-fold cross-validation. In each round,
four folds serve as the training corpus T and the remaining fold is used to cal-
culate the correlation between the predicted and actual performance of each
classifier m, averaged across all models in M . Accordingly, we report the mean
of the average correlation obtained by each DPP across the five test folds.

3.2 DPP Effectiveness

To address Q1, Table 1 shows the mean average correlation coefficient (Pearson’s
ρ and Kendall’s τ) attained by the best-performing DPP in each of the cate-
gories described in Sections 2.1 and 2.2. The most successful predictors are from
the categories BaggBased and ProbPBased, which comprise post-classification
predictors. This result is somewhat expected given that post-retrieval QPP are
state-of-the art. dT-Stats and d-Latent predictors are not effective for the senti-
ment analysis datasets. However, they achieve higher correlations in the catego-
rization datasets (4UNI and 20NG). We believe this happens because sentiment
analysis datasets are smaller in number of documents as well as in document
length, hurting statistics taken on the document and corpus. Finally, DistBased
predictors were ineffective in our experiments. We attribute this to the fact that
neighbor information is used only by one of the eight classifiers whose perfor-
mance we are predicting (KNN). For the other seven classifiers, this inductive
bias does not hold, hence it is not a good predictor of their performance.

4 https://github.com/raphaelcampos/stacking-bagged-boosted-forests



Table 1. Effectiveness of document performance prediction strategies in terms of Pear-
son’s ρ and Kendall’s τ correlation with the cross-entropy loss.

Method
4UNI 20NG Amazon BBC NYT YouTube

K-τ P-ρ K-τ P-ρ K-τ P-ρ K-τ P-ρ K-τ P-ρ K-τ P-ρ

BaggBased .129 .195 .205 .302 .163 .203 .207 .488 0.09 .114 .241 .303
ProbPBased .250 .187 .408 .157 .240 .274 0.39 .397 .113 .123 .421 .448
DistBased .017 .024 .030 .026 .019 .026 .040 .059 .020 .030 .017 .026
d-Latent .121 .149 .081 .092 .020 .029 .046 .076 .020 .030 .039 .047
dT-Stats .175 .159 .265 .263 .019 .032 .038 .058 .017 .027 .016 .028

Table 2. Effectiveness of the combination of document performance prediction using
different groups of methods as input space, in terms of Pearson’s ρ and Kendall’s τ
correlation with the cross-entropy loss. Superscripts †/‡ denote statistically significant
improvements over the best raw DPP at 95%/99% confidence intervals.

Input space
4UNI 20NG Amazon BBC NYT YouTube

K-τ P-ρ K-τ P-ρ K-τ P-ρ K-τ P-ρ K-τ P-ρ K-τ P-ρ

Best raw DPP .250 .195 .408 .302 .240 .274 .390 .488 .113 .123 .421 .448

BaggBased .347‡ .471† .386 .516† .304† .400† .257 .536† .145† .203† .401 .512†

ProbPBased .439† .556† .554‡ .720† .250‡ .325† .553† .613† .112 .148† .444† .468†

TF-IDF .230 .296‡ .334 .276 .243 .314† .242 .260 .103 .158† .325 .363
d-Latent .229 .291 .099 .120 .015 .022 .033 .045 .014 .022 .021 .032
DistBased .030 .051 .029 .017 .010 .014 .030 .041 .015 .022 .029 .045
dT-Stats .220 .258 .297 .360 .008 .012 .022 .038 .010 .012 .018 .026

All-pre-clf .241 .301 .300 .367 .014 .019 .029 .041 .012 .018 .016 .026

All-post-clf .478† .631† .538 .382 .317† .423† .563† .703† .159† .218† .440‡ .531†

All .479† .628† .582† .437 .288† .381† .464 .624† .132‡ .183† .396 .488†

3.3 DPP Complementarity

The combination of predictors through machine learning has been explored for
improving query performance predictors, with the assumption that they capture
complementary information [2, 8, 14, 20, 31, 36]. To address Q2, we assess the
complementarity of the proposed DPP for a given classifier m when used as input
features for a machine-learned DPP (ML-DPP) aimed to predict m’s actual
performance. Table 2 shows the effectiveness of several different groups of DPP
used as input features for a ML-DPP based on a random forest regressor. The
single best-performing DPP is included as a baseline. For all datasets, we can
significantly improve upon the single best DPP by combining multiple DPP.
Therefore, recalling Q2, we conclude that the proposed DPP have a degree of
complementarity and capture different types of information.



Table 3. Average macro F1 score for an ensemble of eight classifiers with DPP as
additional meta-features. Superscripts †/‡ denote statistically significant improvements
compared to not using additional meta-features at 95%/99% confidence intervals.

20NG 4UNI Amazon BBC NYT YouTube

Stacking .939 .779 .759 .769 .630 .759

+ BaggBased .949†
(1.1%) .851†

(9.2%) .836†
(10.1%) .878†

(14.2%) .761†
(20.8%) .858†

(13.0%)

+ ProbPBased .939 (0.0%) .779 (0.0%) .755 (-0.5%) .783 (1.8%) .628 (-0.3%) .757 (-0.3%)

+ DistBased .946†
(0.7%) .772 (-0.9%) .741 (-2.4%) .770 (0.1%) .635 (0.8%) .765 (0.8%)

+ d-Latent .941 (0.2%) .779 (0.0%) .733 (-3.4%) .731 (-4.9%) .635 (0.8%) .752 (-0.9%)

+ dT-Stats .939 (0.0%) .778 (-0.1%) .748 (-1.4%) .751 (-2.3%) .629 (-0.2%) .766 (0.9%)

+ ml BaggBased .939 (0.0%) .785 (0.8%) .750 (-1.2%) .790 (2.7%) .631 (0.2%) .761 (0.3%)

+ ml ProbPBased .940 (0.1%) .774 (-0.6%) .756 (-0.4%) .787 (2.3%) .639 (1.4%) .770 (1.4%)

+ ml DistBased .939 (0.0%) .780 (0.1%) .757 (-0.3%) .777 (1.0%) .628 (-0.3%) .765 (0.8%)

+ ml d-Latent .939 (0.0%) .780 (0.1%) .753 (-0.8%) .788 (2.5%) .641 (1.7%) .761 (0.3%)

+ ml dT-Stats .939 (0.0%) .779 (0.0%) .756 (-0.4%) .766 (-0.4%) .628 (-0.3%) .763 (0.5%)

3.4 Application: Enhancing Classification Ensembles

Improved QPP does not automatically translate to improved retrieval [25]. Roit-
man et al. [28] demonstrated through simulations that a minimum correlation of
ρ > 0.35 would be necessary for a QPP to be useful. Although this barrier has
been surpassed by several QPP in the literature, their observed utility for ad-hoc
retrieval has been marginal [19]. To address Q3, we assess the usefulness of DPP
for improving text classification, by employing DPP as additional meta-features
to a stacking layer, which combines the output of the eight classifiers in M .

Table 3 summarizes our results in terms of macro F1, comparing the addition
of groups of DPP against the stacking strategy. We obtained significant improve-
ments with only one strategy, BaggBased, which is one of our most accurate DPP.
However, several other sets of features that are also accurate for the DPP task
did not translate to improvements in classification. We hypothesize that having
a high accuracy in the performance prediction task is not sufficient for a DPP
to improve the classification ensemble, as our empirical results corroborate.

4 Conclusions

We proposed several document performance predictors (DPP) for automatic
text classification. We demonstrated their effectiveness and complementarity by
thorough experiments on both categorization and sentiment analysis datasets.
Moreover, we showed an application for DPP in improving automatic text clas-
sification ensembles, with state-of-the-art results. As future work, we plan to
investigate why predictors with high correlations on the document performance
prediction task do not necessarily translate into improved text classification.
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[29] Salles, T., Gonçalves, M., Rodrigues, V., Rocha, L.: BROOF: exploiting
out-of-bag errors, boosting and random forests for effective automated clas-
sification. In: Proc. of SIGIR, pp. 353–362 (2015)

[30] Shtok, A., Kurland, O., Carmel, D.: Predicting query performance by query-
drift estimation. In: Proc. of ICTIR, pp. 305–312 (2009)

[31] Shtok, A., Kurland, O., Carmel, D.: Using statistical decision theory and
relevance models for query-performance prediction. In: Proc. of SIGIR, pp.
259–266 (2010)

[32] Tao, Y., Wu, S.: Query performance prediction by considering score mag-
nitude and variance together. In: Proc. of CIKM, pp. 1891–1894 (2014)

[33] Zamani, H., Croft, W.B., Culpepper, J.S.: Neural query performance pre-
diction using weak supervision from multiple signals. In: Proc. of SIGIR,
pp. 105–114 (2018)

[34] Zhang, H.: The optimality of naive Bayes. AA 1(2), 3 (2004)
[35] Zhao, Y., Scholer, F., Tsegay, Y.: Effective pre-retrieval query performance

prediction using similarity and variability evidence. In: Proc. of ECIR, pp.
52–64 (2008)

[36] Zhou, Y., Croft, W.B.: Query performance prediction in web search envi-
ronments. In: Proc. of SIGIR, pp. 543–550 (2007)


