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1 INTRODUCTION

Recommender systems aim to suggest items (e.g., movies, books) to users to assist in their decision-making process.
When faced with the huge amount of available options, combined with a possible lack of experience or knowledge from
the user, recommender systems become extremely useful. With the steady interest in the subject from both academia and
industry throughout the years, several recommendation approaches have been proposed, each with different strengths
and weaknesses. For instance, collaborative recommenders typically excel in data-rich scenarios, while content-based
and knowledge-based recommenders are often preferred in item and user cold-start scenarios, respectively [2].

Hybrid recommenders are designed to leverage the power of different base recommenders in order to make more
robust recommendations [1]. Ensembling, a particular hybridization technique, is commonly used in machine learning
tasks such as classification to enhance generalization by combining various hypotheses learned by different base models.
This technique has led to state-of-the-art machine learning models such as extreme gradient boosting [12]. Figure 1
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illustrates an ensemble of recommender systems. In the figure, given a user 𝑢, we want to estimate the relevance of
unseen items (white circles labeled 𝑎, 𝑏, 𝑐, · · · ). A standard recommendation ensembler would take the scores produced
by 𝑘 base recommenders 𝑅𝑆1, · · · , 𝑅𝑆𝑘 as input (gray circles labeled 𝑟 (1)

𝑢𝑖
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Fig. 1. Ensemble augmentation overview. At recommendation time, candidate items (white circles) are scored for a given user by
multiple base recommenders (gray circles on the left), which are to be ensembled into a final score (gray circles on the right). Current
approaches augment the ensemble input space with performance predictions (blue outlined circles) based on characteristics of the
target user, regardless of the ensembled recommenders. We propose to leverage past historical ratings by the user (black circles on
the left) to augment the ensemble with performance estimates (red outlined circles), one per base recommender.

In addition to base recommender scores, recommendation ensembling has been shown to benefit from performance
predictors [4, 6], i.e., features that are indicative of the performance of each base recommender for the target user
(blue outlined circles in Figure 1, labeled 𝑝

(1)
𝑢 , · · · , 𝑝 (𝑙)𝑢 , for a total of 𝑙 predictors). For instance, Bellogín et al. [6]

adapted the well-known clarity score [14], originally formulated as a measure of query ambiguity in adhoc search, to
measure the coherence of the user’s historical ratings in a recommendation setting. Despite their promise, handcrafting
performance predictors to improve ensembling requires a deep understanding of the (often many) recommenders to
be combined, as well as intuition about how each predictor relates to the performance of each recommender in the
ensemble. Moreover, performance predictors have been shown to be better indicators of the inherent difficulty of a user
(regardless of any particular recommender) than of the relative effectiveness of different base recommenders [31].

To ease the burden of handcrafting predictors and at the same time improve their prediction accuracy, we introduce
a novel class of predictors called performance estimates. In particular, unlike adhoc search, where performance must
be predicted given the lack of user supervision, collaborative recommendation offers an inexpensive alternative for
directly estimating the performance of different recommenders, namely, the user’s own historical ratings 1. As also
illustrated in Figure 1, given a user𝑢 and 𝑘 base recommenders 𝑅𝑆1, · · · , 𝑅𝑆𝑘 , we compute 𝑘 performance estimates (red
outlined circles in Figure 1, labeled 𝑒 (1)𝑢 , · · · , 𝑒 (𝑘)𝑢 ), one per base recommender, as the outcome of a standard evaluation
metric (e.g., root mean squared error, normalized discounted cumulative gain) by assessing the scores produced by each
recommender (gray circles) against the available user feedback (black circles). In contrast to performance predictors,
performance estimates can be readily computed for any number of base recommenders in the ensemble while requiring
no deep understanding of each individual recommender nor of when they are expected to outperform one another.

1Note that any type of user interaction with items indicating positive or negative feedback could be used.
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Comprehensive experiments using real-world datasets of different domains demonstrate the effectiveness of the
proposed performance estimates when combined with plain recommender systems scores for improving current
pointwise ensemblers from the literature. Moreover, we show that performance estimates are robust to the choice of
ensembler, achieving state-of-the-art recommendation accuracy when leveraged by pairwise and listwise ensemblers.

The main contributions of this paper are twofold:

(1) We propose performance estimates as a highly discriminative and inexpensive set of features, which significantly
improve the performance of recommendation ensembles, while mitigating the need for feature engineering.

(2) We demonstrate the effectiveness of the proposed features in different recommendation domains, as well as the
robustness of these features to the choice of ensembler.

2 RELATEDWORK

Below we provide an overview of ensemble methods, followed by a discussion on performance prediction and on related
attempts to exploit these features in recommender systems hybridization.

2.1 Ensemble Methods

Ensembling is the field of machine learning concerned with the combination of several base learners to improve their
generalization and robustness compared to using only one learner. Bootstrap aggregating (bagging) [8] and boosting [21]
are ensembles that combine base models from the same hypothesis space. Bagging modifies the input data for each
learner, using bootstrap samples, and then takes the average of the various models for each new sample. Boosting, on
the other hand, incrementally constructs models by focusing more on training examples where previously learned
models have failed, combining them using a closed formula which takes into account the error of each base learner
being combined.

While such methods have been explored in the recommender systems literature with some success [5], here we focus
on the class of ensembles that are able to combine models based on different hypothesis spaces, namely, stacking [9].
This technique has been extensively used in the machine learning community. The method is based on the combination
of different base models by training a final model, also known as meta-learner or second-level model, which makes
new predictions based on the predictions of the base models. This idea can be seamlessly adapted to combine multiple
recommender systems, and has been successfully used in the field of recommender systems for producing hybrid
recommendations [1, 10]. For instance, both the winner and second place of the Netflix competition [22, 32] employed
a stack of recommenders.

Strategies to combine different rankings have also been proposed. Strategies that do not require training a model
generally fall into the realm of rank aggregation [3], which has been applied to combine the output of multiple
recommenders [33]. The other research strand for the combination of multiple rankings, which requires training
data, is known as learning to rank [25]. Existing approaches can be broadly categorized as pointwise, pairwise and
listwise, according to their choice of input and output representation and their underlying model structure [25]. While
ensemblers based on pointwise learning have been used to leverage performance predictors before [4], to the best of
our knowledge, no previous work attempted to augment pairwise and listwise ensemblers.
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2.2 Performance Prediction

The study of features that can indicate the extent to which a given system will perform effectively for a particular
instance (in our case, a user) is called performance prediction. Performance predictors can enable decisions such as
whether to deliver system outputs or how to combine multiple systems accordingly. This is an established research area
in information retrieval [14], where the performance of a search system in response to a specific query is predicted.
Such features have been classified into pre-retrieval and post-retrieval predictors, according to the available data for the
prediction [11, 19].

Performance prediction for recommendation was first explored by Bellogín et al. [6]. In particular, they proposed
multiple adaptations of the query clarity score predictor, originally proposed by Cronen-Townsend et al. [14], to predict
the performance of recommender systems for different users, reaching a maximum correlation of 0.5 with the actual
nDCG attained by these systems. In a similar vein, Gras et al. [17] explored predictors such as AbnormalityCR to identify
users who are outliers and consequently get poor recommendations, reaching correlations of up to 0.55 with RMSE.
Griffith et al. [18] proposed a decision tree-based strategy using multiple predictors and attained a high correlation of
0.8 between the actual and predicted performance of multiple recommenders.

High prediction accuracy does not automatically translate to high ranking effectiveness. Indeed, in a recent study,
Raiber and Kurland [31] questioned the usefulness of performance prediction as a mechanism for improving ranking
effectiveness for adhoc search. Their study demonstrated that, in the absence of relevance feedback, performance
prediction equates to the more fundamental problem of relevance estimation, which explains the difficulty of the task. In
contrast to adhoc search, personalized recommendation enables the exploration of the target user’s historical feedback.
As a result, rather than predict, we propose to directly estimate the performance of different recommenders, under the
assumption that past performance is indicative of future performance.

2.3 Prediction-enhanced Ensembling

Augmenting ensembles with performance predictors has been explored in the recommendation literature. Bao et al. [4]
proposed the STREAM (Stacking Recommendation Engines with Additional Meta-Features) framework for exploiting
such features for stacking recommenders. The ensemble leverages additional features by making the input space the
concatenation of performance predictors and the scores of base recommenders, as illustrated in Figure 1.

Intuitively, STREAM learns which performance predictors are adequate for each base recommender. This framework
was further improved by Jahrer et al. [20], who leveraged pointwise ensemblers such as neural networks and bagged
gradient boosted decision trees. To release the ensembler from the burden of learning feature associations, Sill et al.
[32] introduced FWLS (Feature-Weighted Linear Stacking), which augments recommender scores by computing their
Cartesian product with respect to multiple predictors. However, the input space of FWLS grows proportionally to
𝑘𝑙 , where 𝑘 is the number of base recommenders and 𝑙 is the number of performance predictors. Fortes et al. [15]
further demonstrated the benefits of ensembling augmentation strategies such as FWLS and STREAM compared to
non-augmented stacking. However, their results did not show significant differences between FWLS and STREAM.

Our approach differs from STREAM and FWLS in two fundamental ways. First, instead of traditional performance
predictors, we augment a recommendation ensemble with performance estimates, which more accurately describe the
performance of each base recommender. Second, as illustrated in Figure 1, because each performance estimate is tied to
a single base recommender, we produce an arguably more discriminative input space. Indeed, as shown in Section 5, our
approach significantly improves upon pointwise ensemblers augmented with performance predictors, such as STREAM
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and FWLS. Moreover, our approach is robust to the choice of ensembler, attaining state-of-the-art recommendation
effectiveness with pairwise and listwise ensemblers.

3 PERFORMANCE ESTIMATES

The idea of using performance predictors for improving ensembles is fairly intuitive. For instance, consider a certain
collaborative recommender 𝑅𝑆1 which performs best when users have rated plenty of items, and a content-based
recommender 𝑅𝑆2 which can handle better users with a small amount of ratings. A performance predictor quantifying
the number of historical ratings of the target user can give a higher weight to 𝑅𝑆1 and demote the contribution
of 𝑅𝑆2 if the user has a prolific history. While intuitive, this approach has two key shortcomings. First, effective
performance prediction is a difficult task and better suited for predicting the inherent difficulty of different users for a
fixed recommender rather than to predict the performance of different recommenders for a fixed user. Indeed, Raiber
and Kurland [31] demonstrated that accurate performance prediction boils down to accurate relevance estimation.
Second, even if perfect performance prediction could be achieved, new predictors must be engineered every time a new
recommender is added to the ensemble, which is in itself a difficult task. In the following, we formalize our proposed
solution to address both of these shortcomings by directly estimating (as opposed to predicting) the performance of
different recommenders in the ensemble.

3.1 Estimating Performance

LetU, I, R, and T denote a set of users, items, possible rating values (e.g. 1-5 stars), and discrete rating timestamps,
respectively. Moreover, let D𝜅2

𝜅1 = {(𝑢, 𝑖, 𝑟, 𝑡) | 𝑢 ∈ U, 𝑖 ∈ I, 𝑟 ∈ R, 𝑡 ∈ T , 𝜅1 < 𝑡 ≤ 𝜅2} be the set of ratings recorded
in the left-open time interval bounded by timestamps 𝜅1 and 𝜅2. A recommender system can be defined as a function
𝑠 (𝑢, 𝑖) : U×I → R. For a user𝑢, this function produces a recommendation list L𝑠

𝑢 = sort𝑠 (𝑢,𝑖) {𝑖 ∈ I} as a permutation
of all available items I. Given a recommendation list L𝑠

𝑢 produced by recommender 𝑠 at time 𝜏 and assessed by user 𝑢
within some (typically short) time interval 𝛿 , the true performance𝑚𝑢 of the system can be measured by:

𝑚𝑢 = Δ(𝑢,L𝑠
𝑢 ,D𝜏+𝛿

𝜏 ), (1)

where Δ could be any evaluation metric, including business metrics such as number of clicks or purchases, error metrics
such as root mean squared error (RMSE) or ranking-based metrics such as normalized discounted cumulative gain
(nDCG).

In reality, for a recommendation list L𝑠
𝑢 displayed at time 𝜏 , no user feedback will be available until after this

time. Hence, at time 𝜏 , system performance can only be approximated. A performance predictor computes such
an approximation based on characteristics of the target user 𝑢 (for pre-retrieval predictors), or of the produced
recommendation list L𝑠

𝑢 (for post-retrieval predictors). Without loss of generality, a performance predictor 𝑝𝑢 is
computed as:

𝑝𝑢 = Π(𝑢,L𝑠
𝑢 ), (2)

where Π could compute, e.g., the amount of ratings in the historical profile of user 𝑢 [32] or its deviation from a random
or most-popular list of items [6]. Given the engineering effort spent in producing discriminative performance predictors
for different recommenders and these predictors’ inherently limited accuracy, we instead propose a simple yet effective
alternative. In particular, we compute a performance estimate 𝑒𝑢 according to:

𝑒𝑢 = Δ(𝑢,L𝑠
𝑢 ,D

𝜅2
𝜅1 ), (3)
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where the set of ratings used for the performance estimation are a subset of D limited by two timestamps 𝜅1 and 𝜅2

before the recommendation time 𝜏 , 0 ≤ 𝜅1 < 𝜅2 ≤ 𝜏 and, similarly to Equation (1), Δ could be any evaluation metric. The
key insight here is that the true performance of recommender 𝑠 can be directly approximated by its past performance,
by leveraging user 𝑢’s historical feedback.

Because each base recommender in the ensemble is also trained using the target user’s historical feedback, its
performance estimate computed on the same data may be overly optimistic. For this reason, we instead compute
performance estimates using validation data set aside from the base recommender training, in the hope of improving
their generalizability to unseen test data. In this case, base recommender training uses D𝜅2

𝜅1 , whereas performance
estimates use D𝜅4

𝜅3 , with 0 ≤ 𝜅1 < 𝜅2 ≤ 𝜅3 < 𝜅4 ≤ 𝜏 .

3.2 Leveraging Performance Estimates

To leverage our introduced performance estimates, we propose to tackle recommendation ensembling as a learning to
rank task. As illustrated in Figure 1, for each user–item pair ⟨𝑢, 𝑖⟩, we are given the scores of 𝑘 base recommenders (𝑅𝑆)
previously trained on historical ratings D𝜅2

𝜅1 , with 0 ≤ 𝜅1 < 𝜅2 ≤ 𝜏 , where 𝜏 once again denotes the recommendation
time. In addition, we are also given 𝑙 performance predictors (here collectively referred to as 𝑃𝑃 ) and 𝑘 performance
estimates (𝑃𝐸) as features for the ensemble.

Our goal is to learn a hypothesis function ℎ : X → Y mapping the input space X onto the output space Y. Our
input space X comprises learning instances of the form ®𝑥 = Φ(𝑢, 𝑖), where Φ is a feature extractor defined over the
user-item pair ⟨𝑢, 𝑖⟩. In practice, we could represent each learning instance ®𝑥 as a (𝑘 + 𝑙 + 𝑘)-dimensional vector, such
that ®𝑥 = ({𝑟 ( 𝑗)

𝑢𝑖
}𝑘
𝑗=1, {𝑝

( 𝑗)
𝑢 }𝑙

𝑗=1, {𝑒
( 𝑗)
𝑢 }𝑘

𝑗=1), where 𝑟
( 𝑗)
𝑢𝑖

, 𝑝 ( 𝑗)𝑢 , and 𝑒 ( 𝑗)𝑢 denote the 𝑗-th recommender score, performance
predictor, and performance estimate, respectively. In turn, our output space Y, in its most basic form, equates to the
set of possible rating values R. In Section 5, we experiment with representative learning to rank approaches from the
pointwise, pairwise, and listwise families,2 encompassing both linear and non-linear hypotheses, using different input
spaces in order to compare our approach with alternative ensemble augmentation strategies.

We propose two variants for leveraging performance estimates. Our first variant corresponds to the raw performance
estimates defined in Equation (3). Because such performance estimates are defined at the user level, all learning instances
®𝑥 = Φ(𝑢, 𝑖) associated with a given user𝑢 have the same performance estimates for all items 𝑖 ∈ I. Such user-dependent,
item-agnostic features bear resemblance to query-dependent, document-agnostic features, which have been shown to be
useful for learning non-linear hypotheses in adhoc search, such as boosted regression trees [30]. Nevertheless, to provide
alternative, item-dependent performance estimates, we consider a weighted variant of the raw 𝑒𝑢 , by multiplying them
by the corresponding recommender score 𝑟𝑢𝑖 :

𝑒𝑢𝑖 = 𝑒𝑢 × 𝑟𝑢𝑖 , (4)

where 𝑒𝑢 (a function of user 𝑢 and recommender 𝑠) is given by Equation (3) and 𝑟𝑢𝑖 denotes the score produced by
recommender 𝑠 for the ⟨𝑢, 𝑖⟩ pair. If the unweighted variant from Equation (3) is used, the ensemble has to learn
the relation between each performance estimate and the score of each base recommender. In contrast, the weighted
variant in Equation (4) further increases the sensitivity of our approach by automatically boosting scores produced by
recommenders with a high performance estimate. In the following sections, we assess the effectiveness of all variants
of our proposed performance estimates for augmenting recommendation ensembles.

2For pairwise and listwise learners, the input and output spaces are suitably redefined to consider instance pairs or instance lists, respectively.
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4 EXPERIMENTAL SETUP

In this section, we detail the setup that supports our investigations in Section 5. We aim to answer the following research
questions:

Q1. How effective are 𝑃𝐸 for ensembling recommenders?
Q2. How robust are 𝑃𝐸 to the choice of ensembler?
Q3. How do error and ranking-based metrics compare for 𝑃𝐸?

4.1 Datasets

We use two publicly available datasets covering three different domains: Yelp,3 for point-of-interest recommendation,
and Amazon,4 for book and electronics recommendation. These datasets provide large-scale timestamped rating data,
which allows for a consistent evaluation by respecting the chronology of the recorded user interactions.5 In particular,
we divide each dataset into base recommenders training (30% earliest ratings) and validation (next 30%), ensembler
training (next 30%) and test (last 10%), as described in Figure 2. Note that we separate training of base recommenders
and ensemblers to make sure ensemblers will not leverage the output of overfitted recommenders. Likewise, we set
aside validation data to estimate the performance of a recommender on data points other than those used for training it.
Also note that data partitioning is performed globally for each dataset and not at the user level, so as to simulate a
more realistic setting with users with different amounts of training and test. After this process, to enable a consistent
evaluation of performance estimates, we retain only users who have ratings in all four partitions.6 The statistics of the
resulting datasets after preprocessing are described in Table 1.

κ1 κ2 κ3 κ4

base
recomm.
training validation

ensemblers
training testus

er
s

temporally ordered ratings

recommendation time   τ

Fig. 2. Data splitting performed in our experiments. Split points 𝜅1, 𝜅2, 𝜅3, and 𝜅4 are global across users.

To compute performance estimates, we choose RMSE and nDCG as representative of error and ranking-based metrics,
respectively.7 Our default setup computes 𝑃𝐸 using RMSE on the validation data. Investigations of the impact of the
evaluation metric (RMSE vs. nDCG) used for estimation are discussed in Section 5.3.

3https://www.yelp.com/dataset/challenge
4http://jmcauley.ucsd.edu/data/amazon/
5This design prevents future ratings by a user from leaking into her training data.
6Cold-start users are out of the scope of this investigation as we focus on improving ensembles for personalized recommendation scenarios only. In such
scenarios, estimates could be calculated for groups of users with similar demographics and we leave this study as future work.
7Results with other error (e.g., MAE, MSE) and ranking-based metrics (e.g., MRR, MAP) showed a high correlation (above 86%) with those reported here
and are hence omitted.
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Table 1. Statistics of the datasets in our evaluation after filtering users without ratings in all four partitions.

Dataset # users # items # ratings density

Yelp 4,014 6,989 229,809 0.8 %
Amazon Books 44,136 673,601 2,156,842 0.00007 %
Amazon Electronics 16,814 86,822 337,158 0.0002 %

4.2 Performance Predictors

For comparison with our proposed performance estimates, we implemented a total of 14 performance predictors from
the literature, as summarized in Table 2. They measure aspects of the user rating behavior that might indicate the
performance of a recommender system. For instance, a high rarity of rated items (low 𝑃𝑃10) might indicate that the user
has a unique taste and might be difficult for the recommender system to provide effective predictions. The predictors
can be calculated on the user dimension, e.g. Abnormality (𝑃𝑃6), or the item, e.g. Item support (𝑃𝑃12). In this paper, we
resort only to features based on the rating matrix D𝜅2

𝜅1 , but other sources could also be used, such as contextual data
(e.g., rating location) and content information (e.g., item category).

Table 2. Performance predictors used in our experiments.

𝑃𝑃 Description Ref.

𝑃𝑃1 The log of the number of distinct ratings dates [32]
𝑃𝑃2 The log of the number of user ratings [32]
𝑃𝑃3 The standard deviation of the user ratings [32]
𝑃𝑃4 Regularized mean support for the user items [32]
𝑃𝑃5 User support: number of ratings [20]
𝑃𝑃6 Abnormality [17]
𝑃𝑃7 AbnormalityCR [17]
𝑃𝑃8 User average rating value [18]
𝑃𝑃9 User standard deviation of rating values [18]
𝑃𝑃10 Average number of ratings for the user items [18]
𝑃𝑃11 Average of ratings from items rated by the user [18]
𝑃𝑃12 Item support: number of ratings [18]
𝑃𝑃13 Average rating value of item [20]
𝑃𝑃14 Item standard deviation of rating values [20]

4.3 Base Recommenders

To test our approach, we produce ensembles of eight classical collaborative recommenders, organized into three broad
classes:

Simple models. NormalPredictor assumes the prediction is generated by a normal distribution, and it estimates its
parameters using maximum likelihood estimation. DebiasedAverage predictions are given solely by the overall
ratings mean and the user and item deviations from this overall average.

Neighborhood models. KNNBaseline is a classical item-based nearest-neighbor recommender [23, Equation (3)].
A variant that takes into account the mean rating of each user (KNNWithMeans) and a variant that does not
(KNNBasic) are also used. CoClustering [16] also uses similarity measurements between users and between items.
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Latent factor models. SVD denotes the matrix factorization algorithm described by Koren et al. [24], which is
closely related to singular value decomposition, hence the name. NMF stands for non-negative matrix factoriza-
tion [28], which is similar to SVD with non-negative user and item factors.

For these base recommenders, we use the implementations provided in the Surprise v1.0.5 package.8 We performed a
randomized search by sampling five times within the domain defined for each hyperparameter [7]. We keep in the
ensemble all five generated models. This way, along with the hyperparameter-free recommenders 𝑁𝑜𝑟𝑚𝑎𝑙𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟

and 𝐷𝑒𝑏𝑖𝑎𝑠𝑒𝑑𝐴𝑣𝑒𝑟𝑎𝑔𝑒 , we produced a total of 6 × 5 + 2 = 32 base recommenders for ensembling.

4.4 Ensemblers and Input Spaces

For the learning to rank methods for ensembling, we used the following pointwise regressors implemented in Scikit-
learn v0.19.1:9 gradient boosting, random forest, support vector machines (SVM) and neural network. For pairwise
and listwise models, we used the following implementations from RankLib v2.1-patched:10 LambdaMART, ListNet,
AdaRank and RankBoost. For each ensemble, we selected the best configuration of hyperparameters by performing a
grid search through a 5-fold cross-validation on the partition for ensemble training in each dataset. This process was
performed for each dataset, ensemble and set of features used. The full hyperparameters configuration used for all
ensembles in this paper as well as their implementations are publicly available.11

To assess the effectiveness of performance estimates for ensemble augmentation, we contrast our proposed input
space to two representative baselines from the literature. Our first baseline input space is composed solely by the
predicted ratings from the 𝑘 base recommenders in the ensemble, i.e., ®𝑥 = ({𝑟 ( 𝑗)

𝑢𝑖
}𝑘
𝑗=1), which is equivalent to non-

augmented stacking. Our second baseline input space augments the 𝑘 base recommenders with 𝑙 performance predictors,
i.e., ®𝑥 = ({𝑟 ( 𝑗)

𝑢𝑖
}𝑘
𝑗=1, {𝑝

( 𝑗)
𝑢 }𝑙

𝑗=1}), which is equivalent to STREAM [4], a state-of-the-art ensemble augmentation approach
described in Section 2. We contrast these two baselines with ensembles augmented with 𝑘 performance estimates, one
per base recommender, such that ®𝑥 = ({𝑟 ( 𝑗)

𝑢𝑖
}𝑘
𝑗=1, {𝑒

( 𝑗)
𝑢 }𝑘

𝑗=1). Ensemble augmentation using both 𝑃𝑃 and 𝑃𝐸 did not
show further improvements compared to using 𝑃𝐸 alone and are hence omitted for brevity.

4.5 Evaluation Procedure

We evaluate all ensembles in a top-20 recommendation task by reporting nDCG@20 on the test partition of each dataset.
Following Lopes et al. [26], instead of predefining a relevance scale based on absolute rating values, for each user 𝑢
in a dataset, we discretize her test ratings into a 3-level relevance scale after correcting for the user bias 𝑟𝑢 . Precisely,
we define relevance level 2 if 𝑟𝑢𝑖 ≥ 𝑟𝑢 , 1 if 𝑟𝑢𝑖 < 𝑟𝑢 , and 0 for 50 randomly selected unseen items, which we assume
are not relevant for the user, following Cremonesi et al. [13]. As a result, an item is considered highly relevant if rated
above average by the target user, somewhat relevant if rated positively yet below average, and not relevant if it did not
attract the user’s attention. To compare our approach to baselines we conducted paired two-sided Student’s 𝑡-tests with
Bonferroni correction (when comparing more than two models) using a 95% confidence level.

5 EXPERIMENTAL EVALUATION

In this section, we empirically evaluate our approach in light of the research questions posed in Section 4.

8http://surpriselib.com/
9http://scikit-learn.org/
10https://sourceforge.net/p/lemur/wiki/RankLib/
11https://github.com/Guzpenha/PerformanceEstimates
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5.1 Ensembling Effectiveness

To address Q1, we assess the extent to which performance estimates can improve the effectiveness of recommendation
ensembles. To this end, we contrast the effectiveness of ensembles using only the scores of base recommenders (𝑅𝑆) to
those that integrate 𝑅𝑆 with either performance predictors (+𝑃𝑃 ) or our proposed performance estimates (+𝑃𝐸). For
performance estimates, we consider both their unweighted version from Equation (3) (denoted +𝑃𝐸𝑢 for clarity) as well
as their weighted version from Equation (4) (denoted +𝑃𝐸𝑤 ).

Table 3 shows the results of this investigation. The best values in each row are in bold, while a superscript letter
denotes a statistically significant improvement over the method in the corresponding column. Compared to 𝑅𝑆 , either
+𝑃𝐸𝑢 or +𝑃𝐸𝑤 significantly improve for 6 out 8 ensembles (exceptions are LambdaMART and SVM) for the Yelp dataset.
For Amazon Books, significant improvements are observed for 5 out of 8 ensembles (exceptions are LambdaMART, SVM
and Gradient Boosting), whereas for Amazon Electronics, 7 out of 8 ensembles are significantly improved (exception is
Gradient Boosting). Compared to using +𝑃𝑃 , either +𝑃𝐸𝑢 or +𝑃𝐸𝑤 improve in most cases: 20 out of 24 ensembles (83%),
with nDCG@20 gains up to 79% (with a mean gain of 23%) compared to using only 𝑅𝑆 and with gains up to 64% (with
a mean gain of 14%) compared to using 𝑅𝑆 + 𝑃𝑃 . Recalling question Q1, this attests the effectiveness of performance
estimates for augmenting recommendation ensembles as a replacement for handcrafted performance predictors.

5.2 Robustness to Ensembling Strategy

The previous results demonstrated the effectiveness of performance estimates (𝑃𝐸) as an alternative to performance
predictors (𝑃𝑃 ) for augmenting recommendation ensembles. To address Q2, we assess the robustness of 𝑃𝐸 to different
ensembling strategies.We note from Table 3 that the unweighted variant 𝑃𝐸𝑢 , which provides item-agnostic performance
estimates, is particularly effective for pointwise ensemblers (gradient boosting, random forest, SVM, neural networks),
significantly outperforming the weighted variant 𝑃𝐸𝑤 in 7 out of 12 cases. This suggests that non-linear pointwise
models are capable of leveraging unweighted estimates as a mechanism to adapt the learned ensemble to the specificities
of different users, regardless of any particular item. In contrast, the weighted variant 𝑃𝐸𝑤 , which discriminates
performance estimates for different items, is often more effective (10 out of 12 cases) for pairwise (RankBoost) and
listwise ensemblers (AdaRank, ListNet). A key distinction of these ensemblers, which might explain their preference for
the weighted variant, is their pursuit of an accurate relative ordering of items (as opposed to an accurate absolute item
relevance estimation). Recalling question Q2, with the exception of LambdaMART, which is significantly improved only
for Amazon Electronics, these results further attest the robustness of performance estimates for different ensemblers.

5.3 Discriminative Power

Thus far, we have used RMSE as the evaluation metric for calculating performance estimates. As an absolute error
metric, RMSE does not directly detect mistaken item swaps, nor swaps in higher (and hence more important) ranking
positions. Given our focus on the ranking task, a natural question is whether producing performance estimates using
a ranking-based metric, such as nDCG, could be more discriminative and, as a result, improve ensembling. In this
section, we address Q3, by contrasting the discriminative power of performance estimates computed using either RMSE
(denoted 𝑃𝐸𝑒 ) or nDCG (denoted 𝑃𝐸𝑔 ) as representative of error and ranking-based metrics, respectively. Table 4 shows
the results of this investigation, once again for both the 𝑃𝐸𝑢 and 𝑃𝐸𝑤 variants.

Table 4 shows that 𝑃𝐸𝑒 is at least as effective as (and sometimes outperforms) 𝑃𝐸𝑔 on 34 out of 48 cases (71%).
This result can be observed for both weighted (16 out of 24 cases) and unweighted (18 out of 24 cases) variants of

10
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Table 3. nDCG@20 for ensemblers leveraging different features: base recommenders scores only (𝑅𝑆), added performance predictors
(+𝑃𝑃 ), and added performance estimates (+𝑃𝐸𝑤 and +𝑃𝐸𝑢 ). A dashed line separates pointwise ensemblers (bottom) from pairwise
and listwise ensemblers (top).

baselines proposed approaches

Ensemble 𝑅𝑆 (a) +𝑃𝑃 (b) +𝑃𝐸𝑤 (c) +𝑃𝐸𝑢 (d)

Yelp

AdaRank 0.427 0.468𝑎𝑑 0.668𝑎𝑏𝑑 0.427
LambdaMART 0.592𝑐 0.597𝑐 0.465 0.591𝑐
ListNet 0.456𝑏𝑑 0.415 0.679𝑎𝑏𝑑 0.451𝑏
RankBoost 0.500 0.510𝑎𝑑 0.556𝑎𝑏𝑑 0.499
GradBoosting 0.437 0.435 0.438 0.450𝑎𝑏𝑐

SVM 0.434 0.479𝑎𝑐𝑑 0.431 0.443𝑎𝑐
NeuralNetwork 0.435𝑐 0.432 0.426 0.442𝑐

RandomForest 0.429 0.429 0.451𝑎𝑏 0.450𝑎𝑏

Amazon Books

AdaRank 0.451 0.532𝑎𝑑 0.765𝑎𝑏𝑑 0.457
LambdaMART 0.477𝑐𝑑 0.475𝑐𝑑 0.393 0.461𝑐
ListNet 0.444 0.572𝑎𝑑 0.725𝑎𝑏𝑑 0.467𝑎
RankBoost 0.470 0.565𝑎𝑑 0.688𝑎𝑏𝑑 0.479𝑎

GradBoosting 0.508 0.513𝑑 0.519𝑑 0.500
SVM 0.502𝑐 0.520𝑎𝑐𝑑 0.452 0.501𝑐
NeuralNetwork 0.485 0.477 0.510𝑎𝑏 0.513𝑎𝑏

RandomForest 0.458 0.471𝑎 0.520𝑎𝑏𝑑 0.486𝑎𝑏

Amazon Electronics

AdaRank 0.457 0.586𝑎𝑑 0.819𝑎𝑏𝑑 0.460
LambdaMART 0.496 0.588𝑎𝑑 0.687𝑎𝑏𝑑 0.489
ListNet 0.496𝑑 0.598𝑎𝑑 0.816𝑎𝑏𝑑 0.462
RankBoost 0.454 0.580𝑎𝑑 0.635𝑎𝑏𝑑 0.455
GradBoosting 0.512𝑏𝑐 0.488 0.486 0.510𝑏𝑐
SVM 0.444 0.459𝑎 0.471𝑎 0.468𝑎
NeuralNetwork 0.480 0.492𝑐 0.472 0.493𝑎𝑐

RandomForest 0.445 0.451 0.463𝑎 0.478𝑎𝑏𝑐

𝑃𝐸 leveraged by both pointwise (15 out of 24 cases) and pairwise/listwise ensemblers (19 out of 24 cases). A possible
explanation for the inferior discriminative power of nDCG in this scenario is that it does not distinguish between items
with the same relevance level. For instance, consider a user who rated three items with [5, 3, 2] stars respectively. If one
of the base recommenders in the ensemble scored these items [3, 2, 0], its 𝑃𝐸𝑔 would be 1.0, which is the best possible
value, while its 𝑃𝐸𝑒 would be 3 (0 being the best possible value), capturing the absolute scoring errors made by the
recommender. Recalling Q3, in contrast to nDCG, RMSE provides a more fine-grained assessment of such tied items,
which could help explain its improved discriminative power as a performance estimate for ensembling recommenders.

5.4 Breakdown Analyses

In this section, we perform three additional analyses to provide further insight into the investigations conducted thus far.
Firstly, to assess the extent to which our observations for the previously stated research questions hold,12 we perform a

12Q2 is not analyzed, as we fix the ensembler for this investigation.
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Table 4. nDCG@20 for ensemblers leveraging performance estimates computed using either RMSE (𝑃𝐸𝑒 ) or nDCG (𝑃𝐸𝑔). All
combinations implicitly include the score of base recommenders (𝑅𝑆). A dashed line separates pointwise ensemblers (bottom) from
pairwise and listwise ensemblers (top).

Ensemble 𝑃𝐸
𝑔
𝑤 (a) 𝑃𝐸𝑒𝑤 (b) 𝑃𝐸

𝑔
𝑢 (a) 𝑃𝐸𝑒𝑢 (b)

Yelp

AdaRank 0.479 0.668𝑎 0.427 0.427
LambdaMART 0.599𝑏 0.465 0.590 0.591
ListNet 0.649 0.679𝑎 0.450 0.451
RankBoost 0.538 0.556𝑎 0.499 0.499
GradBoosting 0.430 0.438𝑎 0.444 0.450
SVM 0.430 0.431 0.433 0.443𝑎

NeuralNetwork 0.428 0.426 0.432 0.442𝑎

RandomForest 0.417 0.451𝑎 0.440 0.450𝑎

Amazon Books

AdaRank 0.667 0.765𝑎 0.457 0.457
LambdaMART 0.450𝑏 0.393 0.465 0.461
ListNet 0.657 0.725𝑎 0.434 0.467𝑎

RankBoost 0.645 0.688𝑎 0.479 0.479
GradBoosting 0.461 0.519𝑎 0.504 0.500
SVM 0.519𝑏 0.452 0.487 0.501𝑎

NeuralNetwork 0.513 0.510 0.505 0.513
RandomForest 0.498 0.520𝑎 0.488 0.486

Amazon Electronics

AdaRank 0.784 0.819𝑎 0.460 0.460
LambdaMART 0.462 0.687𝑎 0.472 0.489𝑎

ListNet 0.746 0.816𝑎 0.491𝑏 0.462
RankBoost 0.688𝑏 0.635 0.455 0.455
GradBoosting 0.491 0.486 0.518 0.510
SVM 0.436 0.471𝑎 0.458 0.468𝑎

NeuralNetwork 0.473 0.472 0.511𝑏 0.493
RandomForest 0.457 0.463 0.473 0.478

Fig. 3. nDCG@20 improvement for ListNet across Yelp users (miniaturized rows on the right show similar distributions for Amazon
Books (top) and Electronics (bottom)). Each plot addresses a research question, with the plot title indicating the settings compared in
each case (e.g., the first plot compares columns (c) and (a) of Table 3).

breakdown of improvements across users. To this end, we selected ListNet as a representative of the several ensemblers
used in our experiments. Figure 3 plots nDCG@20 improvements across all users on Yelp (distributions on the other
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datasets are strikingly similar, and are miniaturized in the figure). Each plot addresses a different research question, with
the plot title indicating the settings compared in each case (e.g., the first plot compares columns (c) and (a) of Table 3).

From Figure 3, we observe that question Q1 is answered positively for the majority of users (90%), corroborating the
reported effectiveness of our proposed performance estimates compared to using only recommender scores (first plot)
as well as to using performance predictors (second plot). Regarding question Q3, the third plot shows neutral nDCG@20
improvements for the majority of users, confirming that using a ranking evaluation metric for performance estimation
does not necessarily have a positive effect. Overall, we conclude that our approach increases recommendation accuracy
for most users while incurring minimum risk of a decreased accuracy for individual users.

Another question is how different ensembles benefit from different feature sets. To shed light on this, we represent
each ensemble as an𝑚-dimensional vector ®𝑣 , where𝑚 is the number of test users in the underlying dataset, and ®𝑣𝑖
denotes the nDCG@20 attained by the ensemble for the 𝑖-th user. To better visualize how different ensembles perform,
we project their vector representation onto a 2-dimensional embedded space using t-SNE [29], such that neighboring
ensembles perform similarly (in terms of nDCG@20) across the user base. Figure 4 shows the output of this process
for all three datasets. From the figure, we note that pointwise methods and listwise/pairwise methods generate two
well-separated clusters, indicating that they behave very differently for each user and have close intra-similarity (e.g.
RankBoost and AdaRank are close in the visualization). We further observe that the choice of 𝑃𝐸 (unweighted or
weighted, visualized as different shapes) also induces sub-clusters in the embedded space, sometimes independent of
the choice of ensembler (visualized as different colors). An example can be seen in the plot for Amazon Electronics,
with sub-clusters induced for 𝑃𝑃 (cross symbols) on the top left and another sub-cluster to its right for 𝑃𝐸𝑒𝑤 (triangles
labeled PE_weighted_rmse) and 𝑃𝐸𝑔𝑤 (plus symbols labeled PE_weighted_ndcg).

Fig. 4. Dimensionality reduction of various ensembles using t-SNE, with input dimensions denoting their nDCG@20 performance for
users on Amazon Books (similar results are observed for the other two datasets, as shown in the miniaturized plots at the bottom).

Finally, we analyze the importance of different features for the ensembles. To get a rough idea as to the importance
ranking for each set of features, we used random forest combined with Gini importance [27] as the sorting criteria,
training three distinct models for each input space, 𝑅𝑆 + 𝑃𝑃 , 𝑅𝑆 , and 𝑅𝑆 + 𝑃𝐸. For this experiment, we chose the 𝑃𝐸𝑒𝑤
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Table 5. Feature importance on Amazon Books. We abbreviate BaselineOnly as BO and NormalPredictor as NP. Each set of features
was used in three different models for this analysis (𝑅𝑆 + 𝑃𝑃 , 𝑅𝑆 , and 𝑅𝑆 + 𝑃𝐸, respectively).

𝑅𝑆 + 𝑃𝑃 𝑅𝑆 𝑅𝑆 + 𝑃𝐸

feature imp. feature imp. feature imp.

𝑃𝑃7 0.031 𝑆𝑉𝐷5 0.086 𝑃𝐸_𝑁𝑃 0.035
𝑃𝑃6 0.029 𝐵𝑂 0.085 𝑃𝐸_𝑆𝑉𝐷5 0.026
𝑃𝑃12 0.029 𝑆𝑉𝐷3 0.074 𝑃𝐸_𝑆𝑉𝐷1 0.023
𝑃𝑃10 0.025 𝑆𝑉𝐷1 0.069 𝑃𝐸_𝐵𝑂 0.022
𝑃𝑃8 0.024 𝑆𝑉𝐷4 0.069 𝑃𝐸_𝑆𝑉𝐷4 0.022
𝑃𝑃9 0.017 𝑁𝑀𝐹4 0.066 𝑃𝐸_𝑁𝑀𝐹3 0.022
𝑃𝑃14 0.017 𝑁𝑀𝐹3 0.050 𝑃𝐸_𝑁𝑀𝐹5 0.021
𝑃𝑃3 0.017 𝑁𝑃 0.050 𝑃𝐸_𝑆𝑉𝐷2 0.021
𝑃𝑃1 0.016 𝑁𝑀𝐹5 0.048 𝑃𝐸_𝑁𝑀𝐹1 0.020

variant given our findings for the previously investigated research questions. Due to space limitations, in Table 5,
we report the results only for Amazon Books, which shows similar trends as the other datasets. From the table, we
observe that the two most important performance predictors (𝑃𝑃7 and 𝑃𝑃6) are user abnormality formulations [17],
which indicate how atypical the user preferences are. In contrast, the top-10 performance estimates often correspond
to recommenders that are also highly ranked themselves as features for the ensemble (e.g., 𝑆𝑉𝐷5, 𝑆𝑉𝐷1, 𝐵𝑂), which
further demonstrates the discriminative power of 𝑃𝐸 for identifying effective base recommenders.

6 CONCLUSION

Weproposed performance estimates as a novel class of features for augmenting recommendation ensembles. Performance
estimates are computed on the target user’s historical feedback by standard evaluation metrics, such as RMSE or nDCG.
As a result, they are highly discriminative of the performance of different recommenders and incur no engineering cost
when new recommenders are added to the ensemble. A thorough evaluation using datasets in three different domains
demonstrated the effectiveness of performance estimates at improving ensembles produced by representative pointwise,
pairwise, and listwise learning to rank approaches.

As future work, we plan to investigate interactions between different features (including base recommender scores,
performance predictors, and performance estimates). This may help further understand the circumstances under
which ensembles fail for individual users, as a means to further improve their robustness. In a similar vein, we plan
to investigate approaches for feature selection, which may have a positive impact on the efficiency of ensembles in
large-scale deployments. Finally, we plan to evaluate the effectiveness of our approach for datasets with other types of
interactions such as implicit feedback and also in predicting the performance of recent deep neural recommenders.
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