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ABSTRACT
In this work we explore to what extent conversation response
ranking models trained on some domains and applied to others (e.g.,
domains for which few or no training instances exist) can be im-
proved when employing two—on first sight opposite—regularization
approaches. We investigate the effectiveness of domain-aware and
domain-agnostic representations obtained via regularization under
two conditions: (i) domain granularity and (ii) regularization depth
(i.e., at which network layer to incorporate the regularization loss).
We conduct a comprehensive set of experiments 1 on four dialogue
datasets and focus on the out-of-domain effectiveness. We demon-
strate that domain-aware representations consistently outperform
domain-agnostic ones in a fine-grained domain setting (i.e., topics
as domains), while domain-agnostic representations proves to be
more effective in a coarse-grained domain setting (i.e., datasets as
domains). With respect to the regularization depth, we find regular-
ization in the initial layers to be more effective than regularization
employed in later (i.e., deeper) layers.

KEYWORDS
multi-task learning, domain adversarial learning, domain adap-
tation, conversational response ranking, conversational search,
information-seeking conversations

1 INTRODUCTION
In information-seeking dialogues, given a user utterance (and po-
tentially additional context information such as the user’s profile
and conversation history), the system response is either generated
on the fly [25] or retrieved from a corpus of historical conversa-
tions [35]; hybrid approaches are beginning to appear too [22, 38].
While generated responses could, in principle, provide adequate
replies to any utterance, in practice the models often generate unin-
formative responses [13] or responses that are incoherent given the
conversation history [14]. In contrast, conversation response ranking
relies on the existence of a large corpus of historical conversation
data and adequate replies (that are coherent, well-formulated and
informative) can be found in the historical data [28, 38].

In this paper, we focus on this very ranking problem. Neural
approaches to conversation response ranking learn representations
from a large number of training dialogues, in order to distinguish
between relevant and irrelevant candidate responses to an utter-
ance. Neural models often overfit to the domain (a data distribution)
they were trained on, learning representations that are only use-
ful on a specific domain while failing on instances from unseen
domains [24, 31]. Additionally, there are domains where we have
limited dialogue data to train on, and thus training effective neural
models on specific domains may be infeasible. Our goal is to study

1The source code is available at
https://github.com/Guzpenha/DomainRegularizedDeepMatchingNetworks

regularization approaches to learn representations for conversation
response ranking that generalize well to out-of-domain instances.

Recently, Cohen et al. [5] adapted domain adversarial learning
(DAL) [8] to improve vanilla neural-net based passage-retrieval
rankers, by learning representations that are agnostic to the domain
of the search query. The proposed model outperformed the vanilla
(non-regularized) neural ranking model on the passage retrieval
task for out-of-domain queries. At the same time, Liu et al. [15]
demonstrated significant improvements on the web search ranking
task (compared to a model singularly trained for this task) when
employing the multi-task learning (MTL) setup to achieve the oppo-
site effect of domain-aware representations: apart from document
ranking, the neural ranker was simultaneously trained for the task
of query domain classification.

While both MTL and DAL have been shown to outperform a
vanilla neural ranker, they have not yet been compared with each
other in a unified ranking setup. It is still unclear why and when the
domain is useful or not in neural ranking models’ representations.
We empirically explore across four conversation datasets how MTL
and DAL perform when employed on top of a common base model—
Deep Matching Networks (DMN) [39]—that provides us with a
strong baseline for conversation response ranking.

Our main findings are: (1) DMN+MTL consistently outperforms
DMN and DMN+DAL in the fine-grained domain setting (topics
such as travel and physics as domains), while DMN+DAL proves
superior in the coarse-grained domain setting. We provide evidence
for the hypothesis that this is caused by the strength of the domain
shift [9, 30], i.e. the distribution differences between domains; and
(2) regularization in the initial layers—that learn to represent the
conversation history and the current utterance—is more effective
than regularization employed in deeper layers that learns how to
match the utterance with the conversation history.

2 BACKGROUND
Conversation Response Ranking. Early studies on retrieval-based di-
alogue systems focused on single-turn conversations [29, 37]. More
recently, researchers have explored techniques for conversation
response ranking [16, 35, 38, 39] which is the task of selecting a re-
sponse from a set of response candidates using all previous turns in
the conversation as input. This is significantly more complex than
retrieval for single-turn interactions, as the ranking model has to
determine where the important information is in the set of previous
utterances. There are two main approaches in neural ranking mod-
els: representation-focused [27] and interaction-focused [10]. The
former learns query (for our task this means all previous utterances
in the conversation) and document (candidate response) represen-
tations separately and then computes the similarity between the
representations. In the latter approach, first a query-document in-
teraction matrix is built, which is then fed to neural net layers. Deep
Matching Networks [35] (DMN for short) belong to the latter group,

https://github.com/Guzpenha/DomainRegularizedDeepMatchingNetworks
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which has shown to outperform representation-focused approaches
on several text matching tasks [19]. DMN was proposed to tackle
the conversation response ranking task by matching the response
candidates with all previous utterances in the dialogue and encod-
ing the information in several interaction matrices, unlike previous
models that either first represent all previous utterances as a vector
and then match it to the response [16].

Multi-Task Learning. In MTL [6, 11, 17], we train a single model for
different tasks at the same time in order to obtain effectiveness im-
provements, as compared to training models individually. Caruana
[3] shows that semantically related tasks are required for MTL to
work well. The sources of MTL’s improvements can be attributed
to a range of factors [26] including choosing representations that
other tasks might also prefer and acting as a regularizer. Liu et al.
[15] demonstrated statistically significant improvements on the
web search result ranking task when employing MTL in a two-task
setup: result ranking and query domain classification. The resulting
model has a representation that is able to distinguish between query
domains (thus, is domain-aware) and outperforms a ranking model
trained solely for ranking.

Domain Adaptation. The often observed discrepancy between train-
ing instances and test instances’ distributions in machine learning
applications is known as dataset bias or domain shift [9, 26, 30] and
has lead to research [7, 33, 34] on the problem of domain adaptation:
adapting the training procedure so that the models generalize to
instances from a different domain. Domain adaptation has only
recently been studied in ranking tasks. Tran et al. [32] applied do-
main adaptation techniques, namely DAL [8] and Maximum Mean
Discrepancy [9], in a learning to rank framework and showed ef-
fectiveness increases on the task of email search. The underlying
strategy of DAL is to learn source and target representations that
are as indistinguishable as possible through a domain classifier that
works adversarially to the main objective by a gradient reversal
layer. Cohen et al. [5] also applied DAL to neural ranking models
and showed that it is effective for domain adaptation in the passage
retrieval task compared to the non-adapted neural model.

Study Motivation. Our study is motivated by the following obser-
vations. We lack research on whether MTL or DAL representation
regularizers are effective for conversation response ranking. More-
over, MTL and DAL are fundamentally opposing approaches (induc-
ing domain-aware and domain agnostic representations) that can
be compared within a single experimental framework as we will
show in §4. This raises the question under which conditions and
why DAL or MTL is more effective. Finally, previous work focused
either on the domain adaptation problem [5, 32], measuring only
out-of-domain effectiveness, or the in-domain effectiveness [15]
whereas we provide a unified comparison of both. To our knowl-
edge, only Adi et al. [1] compared MTL and DAL for the voice
transcription task and found neither MTL nor DAL to show consis-
tent improvements over standard neural models. It is still unclear
the necessary circumstances for each technique to be effective and
it remains an open question if they are effective for the conversation
response ranking task.

3 CONVERSATION RESPONSE RANKING
Before providing details of our MTL and DAL setup (in Section 4),
let us formally define the task of conversation response ranking. Let
D = {(Ui , ri ,yi )}

N
i=1 be an information-seeking conversations data

set consisting of N triplets: dialogue context, response candidate
and response label. The dialogue context Ui is composed of the
previous utterances {u1,u2, ...,uτ−1} at the turn τ of the dialogue.
The candidates ri can be either the true response uτi (and thus
yi = 1), or a negative sampled candidate (yi = 0). The task is then
to learn a function that is able to generate a ranked list for a given
set of candidate responses based on their retrieval scores f (Ui , ri ).

When discussing the domain adaptation problem, we refer to
X as the input space (context and candidate response) and to Y
as the output space (relevance score). We assume that we have
s + t different distributions over X × Y , called source domains
DS = {D1, ...,Ds } and target domains DT = {D1, ...,Dt }. The
domain adaptation task is to build a model f : X → Y with high
out-of-domain effectiveness (test instances from DT ), based on
labeled source samples (xi ,yi ) drawn from source domainsDS and
unlabeled target samples (xi ) from target domains DT .

4 DOMAIN-REGULARIZED DMN
We now introduce the components of our method, first DMN [39],
followed by the DAL and MTL regularizers. As seen in Figure 1,
there are two modules: (i) the DMN module, and, (ii) the domain
classifier module. DMN accumulates thematching scores f between
Ui , ri . The domain classifier module acts as domain regularizer and
comes in two variants: inducing either domain-agnostic represen-
tations via DAL or domain-aware representations via MTL.

4.1 DMN
Context and Response Representations. First, each utterance in the
context and the candidate response are represented at the word
and sentence level. The utterance word level representation E(u)
is the concatenation of embedding vectors obtained from a global
look-up embedding matrix, such as word embeddings [18], for
every word in the utterance. The sentence level representation
of each word is the concatenation of the forward and backward
BiGRU [4] recurrent units which processes E(u) in opposite direc-
tions. The BiGRU hidden states for each word are then concatenated
huwi = [

−→
h uwi ,

←−
h uwi ]. We refer to the concatenation of all the utter-

ance’s word hidden states huwi as the sentence level representation
H (u). The same process is applied to obtain response word level
representation E(r ) and sentence level representation H (r ).

Interaction Matching Matrices. Two interaction matrices are then
created: a word interactionmatrix and a sentence interactionmatrix.
MatrixM1 is defined as the word dot product similarity between
the utterance word embedding representation E(u) and the can-
didate response word embedding representation E(r ). It captures
how similar the utterance and response are in terms of their word
embeddings. Matrix M2 is defined as the dot product similarity
between the sentence level representation of the utterance H (u)
and the sentence level representation of the response H (r ).

Matching Accumulation, Prediction and Training. For each turn in
the conversation (up to a certain window size c , a hyperparameter
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Figure 1: An overview of DMN and the domain regularizer. The green layers learn inputs representations, which is used by the
blue layers to output amatching score and rank the responses (DMN). The regularization techniques (denoted byDMN+DAL or
DMN+MTL) share the green layers of DMN to classify the dialogue into domains (red). The only difference between DMN+DAL
and DMN+MTL is the inclusion of the gradient reversal layer (GRL). On the right we have a conversation example with the
notation used throughout the paper.

of the model),M1 andM2 are fed into a convolution layer, followed
by a max pooling layer, in order to learn higher level matching
patterns. This generates a matrix for each utterance/candidate-
response pair in the conversation so far; those outputs are feed
into a BiGRU layer that accumulates the results of the max pooling
layer into hidden statesHacc = [h1, ...,hc ], which are concatenated
and fed into a fully connected layer (FCL) that determines the final
matching score: f (Ui , ri ) = σ (wT

2 ·tanh(wT
1 ·Hacc +b1)+b2). Here,

σ is the softmax function andw1,w2,b1,b2 are model parameters.
To train DMNwe use the pairwise hinge loss function. Each train-

ing instance is a triplet (Ui , r
+
i , r
−
i ), where r

+
i is the true response

and r−i a negative sampled response. Formally, the relevance loss
function is: Lrelevance(D,θf ,θy ) =

∑N
i=1max(0, ϵ − f (Ui , r

+
i ) +

f (Ui , r
−
i )), where θf and θf denote all the parameters of the model,

ϵ is the margin for the hinge loss and N is the number of triplets in
the training data D. Having formally defined the base model, we
now introduce the two regularizers: DMN+DAL and DMN+MTL.

4.2 DMN+DAL: Domain Adversarial Learning
To tackle domain adaptation, Ganin et al. [8] proposed to control
the H -divergence—a notion of distance between source and tar-
get domains proposed by Ben-David et al. [2]—by learning source
and target representations that are as indistinguishable as possible
through a domain classifier resulting in domain-agnostic represen-
tations. This classifier works adversarially to the main objective by
adding a gradient reversal layer between the domain classifier and
the model representation layers. Inspired by [5], we implement this
approach for DMN. As seen in Figure 1, there are a set of shared
weights θf regarding the textual representation and matching lay-
ers of the network, that are used by both the domain classifier (a
fully connected layer with its own set of weights θd ), and the final

matching scorer (a fully connected layer with its own set of weights
θy ). During network training, the domain loss backpropagates (red
arrow) through the domain classifier weights (θd ) and after that
a gradient reversal layer (GRL) flips the sign of the gradient. This
procedure is known as domain adversarial learning and can be
represented by another term in the loss function (the domain loss)
that is subtracted from the relevance loss:

L DAL MTL = Lrelevance(D,θf ,θy ) − + λ·Ldomain(D,θf ,θd )

(1)
Note that Equation 1 showcases both DAL and MTL, the latter is
explained in the next section. For both approaches, the domain
classifier is a fully connected layer that can take its input from
various points of the network layers—we here explore two points
at different network depths. The input for the domain classifier is
thus either the concatenation of the textual representations of both
the context and response candidate [E(u),H (u),E(r ),H (r )] (Depth
I in Figure 1) or the accumulated matching score Hacc (Depth II
in Figure 1). The activation function of the domain classifier is a
softmax, and the loss function used for training is the categorical
cross entropy.

4.3 DMN+MTL: Multi-Task Learning
According to the MTL line of reasoning, the tasks of conversation
domain classification and conversation response ranking can bene-
fit from a unified representation, as they are intrinsically related—
and this relatedness of tasks is important for MTL to work well [3].
Identifying the domain of an information need (expressed here
through utterances) is likely important for ranking the correct re-
sponse highly [15]. In our MTL setup, we keep almost our entire
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DAL setup intact, with the exception of the loss function. In or-
der to achieve representations that are able to distinguish between
domains, we flip the sign of the DAL loss function (cf. Equation 1).

5 EXPERIMENTAL SETUP
5.1 Datasets
We consider four information-seeking conversation datasets2 that
have been used in prior works [16, 21, 35, 38]:
MSDialog3 [23]: a total of 246K context-response pairs, built from
35.5K information seeking conversations from the Microsoft An-
swer community, a QA forum for several Microsoft products.
UDC4 [16]: the Ubuntu Dialog Corpus contains 2 million context-
response pairs collected from the chat logs of the IRC network
concerning technical support (Ubuntu) conversations.
MANtIS5 [20]: 1.3 million context-response pairs built from conver-
sations of 14 diverse sites of Stack Exchange.
SEApple6: 258k context-response pairs collected from Stack Ex-
change7, containing conversations about Apple products. This is a
subset of MANtIS we created to provide a third technical only do-
main dataset (in addition to the popular MSDialog and UDC datasets)

Table 1: Statistics of the datasets used. U indicates the con-
text, r response and u utterances.

MSDialog UDC
has topics yes no
# topics 75 -
set Train Valid Test Train Valid Test
# (U, r ) pairs 173k 37k 35k 1000k 500k 500k
# cand. per U 10 10 10 2 10 10
Avg # turns 5.0 4.8 4.4 10.1 10.1 10.1
Avg # words per u 55.8 55.8 52.7 7.3 7.3 7.3
Avg # words per r 67.3 68.8 67.7 12.1 12.1 12.1

SEApple MANtIS
has topics no yes
# topic - 14
set Train Valid Test Train Valid Test
# (U, r ) pairs 188k 33k 37k 904k 199k 197k
# cand. per U 10 10 10 11 11 11
Avg # turns 3.5 3.7 3.7 4.0 4.1 4.1
Avg # words per u 69.3 84.3 84.3 98.2 107.2 110.4
Avg # words per r 63.3 79.9 83.0 91.0 100.1 94.6

5.2 Evaluation
We consider two evaluation schemes in our experiments: in-domain
effectiveness and out-of-domain effectiveness. The out-of-domain
evaluation measures how well the model performs for the domain
adaptation task, i.e. test sets from the target domains DT . The in-
domain effectiveness demonstrates how well the adapted models
perform on the instances from the domain they were trained on,
i.e. test sets from source domains DS .

2We use their default train, development and test splits.
3MSDialog is available at https://ciir.cs.umass.edu/downloads/msdialog/
4UDC is available at: https://www.dropbox.com/s/2fdn26rj6h9bpvl/ubuntu%20data.zip.
5MANtIS is available at https://guzpenha.github.io/MANtIS/.
6SEApple is available at https://drive.google.com/open?id=1gPUmAqv7_
l2J2wF07h71adRoRaLITseB
7https://apple.stackexchange.com/, dump of 2019-03-04

We report the effectiveness on the test sets with respect to Mean
Average Precision (MAP) similar to prior works [35, 39]. We train
every model five times and report the average effectiveness over
those five models in order to obtain more reliable evaluation values.
We observe a low standard deviation (maximum of 0.004 MAP) and
consistent results among different runs.

5.3 Implementation Details
Both DAL and MTL have only one hyperparameter, λ, that con-
trols how strong the effect of the regularizer is when training the
network. We gradually increase λ from 0 to 1 during the train-
ing process, using the following formula in all of our experiments:
λp =

2
1+exp(−γ ·p) − 1, where p is the percentage of total iterations

so far (it reaches 100% at the end of the training procedure) and γ
was set to 10, the same strategy and γ employed by [8].

The DMN hyperparameters are the same as Yang et al. [39].
We differ by setting c = 2 previous utterances for accumulating
matching scores and set the maximum possible utterance length to
30 words, achieving close DMN results while increasing efficiency.
Given the large number of models we train— 26 (combinations
of source and target domains) * 5 (DMN variations) * 5 (different
random seeds) = 650—we reduced the number of iterations to 20%
of the ones reported by [39], which reduced the MAP in ∼ 20% (cf.
Table 3 train on MS and test on MS). We employed word2vec [18]
with 200 dimensions and pretrain them on both the source and
target datasets in all our experiments; the embeddings are then
fine-tuned during the training of the models. We implemented all
models with TensorFlow on top of the publicly available DMN
implementation 8. The models were trained using Adam optimizer
[12] with an initial learning rate of 0.001.

6 EXPERIMENTAL RESULTS
The central results of our experiments are shown in Tables 2 and 3.
Let us briefly describe how to read the tables’ result rows, using the
first row of Table 2 as a concrete example. Here, we train our five
model variants on the training splits of all domains within MANtIS
apart from the domain apple (and thus DS = all \ apple). We then
report the effectiveness (in MAP) on the test splits of the domain
DT = apple (that is the out-of-domain effectiveness) and the test
splits of DT = all \ apple (the in-domain effectiveness).

6.1 Domain Granularity
Fine-grained: Topics Level. The MSDialog (75 topics, such as Out-
look, Bing Search and MSN) and MANtIS (14 topics such as electron-
ics, travel and physics) datasets contain one topic label for each
conversation and are thus suitable for our topic-level experiments.
We present the test set results for the ten most frequently discussed
topics per dataset in Table 2.We report the effectiveness (inMAP, av-
eraged over five runs) of our DMN baseline, and the four regulariza-
tion variants DMN+DALI (DAL with input depth I), DMN+DALI I
(DAL with input depth II), DMN+MTLI and DMN+MTLI I . Our
train/test dataset combinations are either in-domain (i.e., we train
and test on the same topics) or out-of-domain (i.e., we train on all
but topic T and test on conversations with topic T ).

8https://github.com/yangliuy/NeuralResponseRanking

https://ciir.cs.umass.edu/downloads/msdialog/
https://www.dropbox.com/s/2fdn26rj6h9bpvl/ubuntu%20data.zip
https://guzpenha.github.io/MANtIS/
https://drive.google.com/open?id=1gPUmAqv7_l2J2wF07h71adRoRaLITseB
https://drive.google.com/open?id=1gPUmAqv7_l2J2wF07h71adRoRaLITseB
https://apple.stackexchange.com/
https://github.com/yangliuy/NeuralResponseRanking
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Table 2:MAP results considering topics inside each dataset as domains, average of 5 runs for eachmodel with different random
initialization weights. Bold values indicate the highest values for each line. DMN is the baseline model and all subsequent
columns with header +XY should be read as DMN+XY , where X is the regularization type and Y is the regularization depth.

MANtIS

test on DT (out-of domain MAP) test on DS (in-domain MAP)
train on DS

DT DMN + DALI + DALI I + MTLI + MTLI I DS DMN + DALI + DALI I + MTLI + MTLI I

all \ apple apple 0.512 0.494 0.270 0.539 0.491 all \ apple 0.514 0.503 0.276 0.543 0.488
all \ electronics electronics 0.527 0.525 0.274 0.528 0.464 all \ electronics 0.502 0.502 0.271 0.499 0.493
all \ dba dba 0.541 0.532 0.318 0.564 0.517 all \ dba 0.516 0.511 0.308 0.534 0.490
all \ physics physics 0.544 0.528 0.436 0.552 0.522 all \ physics 0.510 0.500 0.447 0.527 0.501
all \ english english 0.492 0.511 0.496 0.514 0.508 all \ english 0.504 0.501 0.493 0.542 0.504
all \ security security 0.564 0.533 0.485 0.564 0.493 all \ security 0.526 0.500 0.471 0.533 0.474
all \ gaming gaming 0.523 0.514 0.276 0.545 0.488 all \ gaming 0.512 0.505 0.275 0.536 0.489
all \ gis gis 0.470 0.465 0.440 0.485 0.447 all \ gis 0.513 0.508 0.459 0.534 0.504
all \ askubuntu askubuntu 0.474 0.464 0.368 0.486 0.451 all \ askubuntu 0.535 0.528 0.427 0.548 0.518
all \ stats stats 0.533 0.527 0.279 0.546 0.455 all \ stats 0.504 0.499 0.272 0.533 0.479

MSDialog

test on DT (out-of domain MAP) test on DS (in-domain MAP)
train on DS

DT DMN + DALI + DALI I + MTLI + MTLI I DS DMN + DALI + DALI I + MTLI + MTLI I

all \MSN MSN 0.519 0.470 0.324 0.530 0.461 all \MSN 0.541 0.482 0.322 0.549 0.484
all \ Onedrive Onedrive 0.527 0.475 0.340 0.539 0.423 all \ Onedrive 0.547 0.490 0.344 0.551 0.485
all \ IE7 IE7 0.533 0.411 0.304 0.527 0.463 all \ IE7 0.546 0.423 0.303 0.554 0.481
all \Windows7 Windows7 0.507 0.409 0.325 0.520 0.464 all \Windows7 0.564 0.420 0.328 0.547 0.499
all \ Outlook Outlook 0.535 0.461 0.316 0.529 0.421 all \ Outlook 0.556 0.458 0.314 0.551 0.500
all \ Band Band 0.520 0.467 0.371 0.535 0.480 all \ Band 0.551 0.483 0.356 0.558 0.499
all \ Defender Defender 0.532 0.406 0.361 0.540 0.490 all \ Defender 0.560 0.395 0.341 0.564 0.482
all \ Office Office 0.512 0.479 0.344 0.529 0.455 all \ Office 0.547 0.498 0.343 0.556 0.491
all \ Lumia Lumia 0.537 0.427 0.341 0.542 0.484 all \ Lumia 0.559 0.415 0.332 0.562 0.494
all \ OutlookIns OutlookIns 0.509 0.431 0.340 0.541 0.448 all \ OutlookIns 0.530 0.445 0.338 0.550 0.496

Table 3: MAP considering datasets as domains, average of 5 runs for each model with different random initialization weights.
Bold values indicate the highest values for each line. DMN is the baseline model and all subsequent columns with header +XY

should be read as DMN+XY , where X is the regularization type and Y is the regularization depth.

test on DT (out-of domain) test on DS (in-domain)
train on DS

DT DMN + DALI + DALI I + MTLI + MTLI I DS DMN + DALI + DALI I + MTLI + MTLI I

MS UDC 0.289 0.292 0.293 0.284 0.295 MS 0.534 0.436 0.310 0.524 0.469
MS Apple 0.455 0.484 0.283 0.418 0.397 MS 0.529 0.394 0.292 0.517 0.460

Apple MS 0.325 0.371 0.296 0.325 0.338 Apple 0.657 0.600 0.290 0.662 0.649
Apple UDC 0.298 0.297 0.303 0.309 0.311 Apple 0.659 0.609 0.381 0.647 0.644
UDC Apple 0.356 0.363 0.291 0.314 0.358 UDC 0.657 0.629 0.295 0.645 0.646
UDC MS 0.365 0.382 0.290 0.325 0.343 UDC 0.658 0.613 0.292 0.655 0.650

In most cases (34 out of 40 across both datasets and in-domain
and out-of-domain instances), we find DMN+MTLI to perform
best, with an average improvement over DMN of 2.8%. The DAL
variants consistently perform worse than DMN. This finding is in
contrast to [5] who report across their topic-level experiments DAL
to outperform their vanilla neural net approach. We note though
that their results are based on a different ranking task (passage
retrieval) using different neural ranking models. At the same time,
our cross-topics results are in agreement with prior evidence [15]
that learning domain-aware query representations (i.e., MTL-based)
are effective for ranking, considering in domain instances, and,
surprisingly for out of domain instances as well.

Thus, in the granularity of topics as domain, we observe
that inducing domain-aware representations are the most
effective regularization technique. We argue that DMN+DAL

is not effective in this scenario due to the domain shift, i.e. the differ-
ence between the source and target distributions, not being overly
strong. Consider the left plot of Figure 2a. It shows a t-SNE visual-
ization of the utterances sentence representation using a trained
DMN. Target domain instances are displayed with +, while source
instances are colored •. We note that the target and source instances
are similarly spread throughout this two dimensional space. This
suggests that the source and target distributions are quite similar.
Since the high-level goal of domain adaptation is to tackle the do-
main shift problem by pushing the two distributions closer, the
already existent overlap between source and target distributions in
DMN representations could be resulting in the DMN+DAL ineffec-
tiveness. Moreover, one may expect that if the learnt source and
target representations are similar, a model trained on the source do-
main to generalize to the target domain. Comparing the in-domain
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(a) Topic level (b) Dataset level

Figure 2: t-SNE visualization of the sentence representations H (u) of the test instances. Shown are both the source domain (•)
and the target domain (+). (a): topic-level setup of DMN and DMN+MTLI (MANtIS topics); (b): dataset-level setup of DMN and
DMN+DALI .

and out-of-domain MAP of DMN on Tab. 2 we see that the effective-
ness drops only by an average of 4.8% MAP on MSDialog, whereas
for MANtIS it actually increases by an average of 0.9 % MAP, which
showcases that the domain shift is not strong.

Coarse-grained: Datasets Level. Table 3 contains the results of our
dataset-level experiments for which we employed the three tech-
nical support datasets MSDialog, UDC, and SEApple. The out-of-
domain experiments, DMN+DALI performs best for four out of six
dataset combinations (average improvement of 6.7% over DMN),
whereas in the in-domain setting the baseline is most effective.

In the two dataset combinations that DMN+DALI fails (first and
fourth rows), we note that all other variants and the baseline also
fail to generalize from a source domain (MSDialog in first row and
SEApple in the fourth row) to the UDC domain: if we do not train
DMN (i.e., randomly initialize its weights without further training)
our untrained DMN also achieves a MAP of ≈0.3. This difficulty
to generalize to UDC could mean that its data distribution is too
different to begin with: while MSDialog and SEApple have similar
average words per utterance scores (55.8 and 69.3 respectively) and
average number of turns (3.5 and 5.0 respectively), UDC has shorter
utterances (12.1 average words) and longer dialogues (10.1 turns).

Figure 2b (left) shows the representation of utterances in SEApple
and MSDialog for DMN: the embeddings are not identical, but have
some overlap. Those seem to be necessary conditions for domain
adaptation techniques to work [32]. To conclude, in the granu-
larity of datasets as domains, we find domain-agnostic repre-
sentations to be the most effective regularization technique.

6.2 Regularization Depth
Across all experiments we reported so far, we can observe that in-
ducing domain variance (MTL) and invariance (DAL) respectively,
is more successful when employing representations of in-
put depth I (i.e., word and sentence embeddings of the utter-
ances) instead of input depth II (i.e., representations based
on matching matrices). This result is somewhat expected since
the matching representations capture the similarity scores between
the utterances in the context and the response, i.e. how semantically
similar the response is to each of the previous utterances, and the

convolution and pooling layers act as local filters, learning where
is important to match: word/sentence wise and turn-wise. Thus,
the word information is present in the representation of earlier
layers, while deeper layers capture how such representations from
utterances and response candidate match.

7 CONCLUSIONS
In this work we have compared two (seemingly opposing) regular-
ization approaches for the task of conversational response ranking:
multi-task learning for domain classification and domain adver-
sarial learning. Our results show that different domain regulariza-
tion techniques for deep matching networks work under different
set of conditions: (i) DMN+MTL is most effective when the do-
main granularity is high or fine-grained (topic-level experiments),
whereas DMN+DAL is more effective at coarser domain granulari-
ties (dataset-level experiments) likely due to the existing differences
in the strength of the domain shift and (ii) applying regularization
at deeper layers of matching scores (input depth II) in the network
is less effective than regularizing based on the early layers (input
depth I) of textual representation.

Based on our findings, in future work we will explore the fol-
lowing three avenues: (i) Although we have found domain regu-
larization to lead to effectiveness improvements, overall, the mod-
els’ effectiveness is not yet high enough to be suitable for actual
retrieval-based open-domain conversational systems. We rely on a
number of good response candidates (in line with all prior works
[16, 35, 36]) and it is still an open question how to create a good
response pool in the first place; (ii) we generated MANtIS from Stack
Exchange, considering the sub-portals that are neither too popular
nor too small. Overall, Stack Exchange hosts more than 170 sub-
portals, and thus large-scale experiments across all domains will
allow us to consider additional factors such as user types, domain
clusters and so on9.

9Due to computational constraints, we opted for a smaller set of initial domains in
this work.
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